基于图像的三维重建——对极几何(3)

本文深入探讨了计算机视觉中的基础矩阵与本征矩阵,解析了对极约束的数学原理及其在求解相机姿态中的应用。介绍了直接线性变换法和RANSAC算法在求解基础矩阵中的作用,以及如何从中恢复相机姿态。此外,还阐述了单应矩阵的性质和求解方法,包括直接线性变换和RANSAC估计,用于实现不同视角间的像素转换。这些理论与方法是理解和实现立体视觉及图像匹配的关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


对极约束

如图所示,描述的是空间中的一点在左右两个相机中成像,空间点在两个相机的成像点通过外参矩阵R,t建立了一个等式关系,或者称为一种约束关系,这个约束就叫做对极约束。以下两式描述了两个像素坐标x1 和x2的关系。

公式推导如下图:

基础矩阵F

基础矩阵性质

基础矩阵求解方法

基础矩阵的求解主要有两种方法:1.直接线性变换法;2. 基于RANSAC的鲁棒方法求得。

直接线性变换法

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基于RANSAC的鲁棒方法

算法流程为:

  1. 随机采样8对匹配点(x1(n) ,x2(n));
  2. 8点法求解基础矩阵 F ^ \widehat{F} F ;
  3. 奇异值约束获取基础矩阵F;
  4. 计算误差,并统计内点个数;
  5. 重复上述过程,选择内点数最多的结果;
  6. 对所有的内点执行2,3,重新计算F。

其中,采样次数计算满足下式:

内点判断标准满足下式:

本征矩阵E

本征矩阵性质

本征矩阵求解

从本征矩阵中恢复相机姿态

本质矩阵有良好的性质,它的奇异值是[σ,σ,0]的形式,可以通过SVD分解得到R和t。若E的SVD分解为E = U Σ VT ,其中Σ = diag(σ,σ,0),则R和t的可能结果如下:

其中

一共存在四组可能的R,t组合,如下图所示:

那么如何选择正确的相机姿态呢:需要让空间中一点同时位于两个相机的前方。
在这里插入图片描述

单应矩阵H

基础矩阵和本征矩阵是一种坐标之间的内在约束式,并不是两个像素之间的相互转换关系。而单应矩阵可以将不同相机对应点像素坐标进行转换,条件是当空间中特征点位于一平面上。如下图:

单应矩阵性质

单应矩阵求解

直接线性变换求解单应矩阵

在这里插入图片描述

RANSAC法估计单应矩阵

算法流程:

  1. 随机采样4对匹配点(x1(n) ,x2(n));
  2. 4点法求解基础矩阵H;
  3. 计算误差,并统计内点个数;
  4. 重复上述过程,选择内点数最多的结果;
  5. 对所有内点执行3,4,重新计算H

其中,内点判断标准为:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值