前 言
《Handy-Multi-Agent》是一个以实用为核心,从原理出发,带你一步步从基础单Agent构建到复杂多智能体系统的全流程实践教程。本项目将基于国内领先的多智能体框架CAMEL,不仅深入剖析Agent的各个组成构件,更提供完整代码实现与详细讲解,让每位学习者都能真正理解并掌握多智能体系统的开发能力。
我们不只是教你"用",更教你"懂"——从理论到实践,从单Agent到多Agent协作,打造一套真正可实践的多智能体应用开发全景图。
项目的主要内容包括:
-
环境配置与基础工具 - 手把手带你配置开发环境,介绍前沿环境管理工具。
-
Agent构建全解析 - 深度剖析Agent的记忆、工具、模型等核心组件在CAMEL中的实现。
-
CAMEL框架实战 - 从零开始构建你的第一个多智能体系统。
-
RAG应用开发指南 - 掌握检索增强生成技术,包括前沿的Graph RAG实现。
-
旅游助手实战项目 - 完整构建一个旅游出行规划多智能体系统。
开源地址:
https://github.com/datawhalechina/handy-multi-agent
图1.项目主页
开源初心
当前,大模型的风口已至,智能体(Agent)技术日新月异,各类框架和工具层出不穷。然而,从理解原理到实际构建完整系统之间,依然存在着难以逾越的鸿沟。市场上的多智能体系统(MAS)教程要么过于理论化难以实践,要么过度依赖工具包而缺乏原理深度,初学者往往难以真正掌握核心理念并应用到实际场景中。
《Handy-Multi-Agent》项目应运而生——我们不是简单的API调用教程,而是一套融合理论与实践的全流程开发指南。我们相信,只有透彻理解每个组件的工作原理,才能真正从"能用"到"会用",最终实现"创新应用"。
我们希望通过本项目,为每一位对智能体技术感兴趣的人搭建一座从入门到精通的桥梁,真正掌握多智能体系统的开发能力。
项目受众
本项目特别适合:
-
对多智能体系统、大语言模型应用领域有浓厚兴趣的学习者
-
希望深入理解智能体底层原理并进行实践的开发者
-
已掌握基础AI知识,想要构建自己的多智能体应用的技术人员
-
对CAMEL框架感兴趣,希望系统学习应用的研究者
项目亮点
从零起步 - 无需高深学术背景,从最基础的Agent概念开始讲解
全链路覆盖 - 完整涵盖从单Agent构建到多Agent协作的全部环节
代码即文档 - 每个概念都配有详细注释的代码实现,便于理解与复现
应用导向 - 以实际应用为目标,从实用角度设计教程内容
前沿技术 - 包含Graph RAG等前沿技术的实践指导
学习指南
本教程采用渐进式学习路径,从基础到进阶,层层深入。其中第四、五章内容较为丰富且难度稍高,但我们提供了详尽的代码示例与讲解,确保每位学习者都能掌握。每章都设有实践任务,帮助巩固所学知识,建议按顺序学习以获得最佳效果。初学者无需担心,我们的教程设计保证了循序渐进的学习体验。
硬件要求
本教程同时提供了本地部署各种模型和使用API的方案,所以,任何配置的电脑都可以玩转本项目~
后续规划
CAMEL生态正在蓬勃发展,除了本教程介绍的基础框架外,通用多智能体助手OWL、数据合成项目Loong等创新应用也在不断涌现。未来,我们将持续更新教程内容,带领大家探索这些前沿应用,而现阶段的CAMEL框架学习正是掌握这些高级应用的基础。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓