如果你是一个开发者,手里有一个强大的语言模型(LLM),想用它来做点厉害的事情,比如文本分类、智能问答,或者识别文本里的关键信息。可问题来了:训练这么一个庞然大物需要海量的计算资源和时间,你手头的电脑可能累到冒烟,甚至还有数据不够多导致模型“学歪”的风险。别慌,今天我们就来聊聊四种LLM微调方法,帮你高效优化模型,轻松应对各种场景。
这四种方法分别是:Full-tuning(全量微调)、Freeze-tuning(冻结部分参数微调)、LoRA(低秩适应)和QLoRA(量化低秩适应)。它们各有绝活,能在不同情况下帮你省时省力又保证效果。接下来,我们就用大白话把它们讲明白。
一、Full-tuning(全量微调):给模型做“重塑金身”
Full-tuning是最传统、最彻底的微调方式。简单来说,就是把模型的每个零件(参数)都拿出来调一调,让它完全适应你的任务。就像给模型做一次“重塑金身”,从头到脚都照顾到位。
1、怎么做?
-
先加载一个预训练好的LLM模型,连它所有的参数一起带进来。
-
用你的任务数据(比如分类用的文本),搭配一个目标(比如让误差最小),对模型从头到尾调整一遍。
-
每个参数都会被更新,直到模型能干好你的活儿。
2、优点
-
超级灵活:模型能深度学习你的任务,效果往往很顶。
-
表现力强:特别适合数据多、任务复杂的情况。
3、缺点
-
费力又费钱:参数动辄几亿甚至上千亿,训练起来需要高端显卡和好几天时间。
-
容易学过头:如果数据不够多,模型可能会死记硬背训练数据,碰到新数据就懵。
4、适合场景
数据一大堆、任务特别复杂、而且你有好设备的时候,Full-tuning是你的好帮手。
二、Freeze-tuning(冻结部分参数微调):只调“头部”
Freeze-tuning是个轻量化的选择。它不像Full-tuning那样大动干戈,而是只调整模型的“顶层”(比如最后几层),其他部分保持原样。就像只给模型的“头部”调整,省时省力。
1、怎么做?
-
加载预训练的LLM模型。
-
挑出顶层(比如最后一个模块),让它的参数可以动。
-
底下的参数全部“冻住”,保持预训练时的样子。
-
只用任务数据调这部分解冻的参数。
2、优点
-
效率高:动的地方少,训练快,资源耗得也少。
-
不容易学歪:底层保留了预训练的通用知识,泛化能力强。
3、缺点
-
能力有限:大部分参数不动,模型可能没法完全适应你的任务。
4、适合场景
数据不多、任务简单,或者设备一般的时候,Freeze-tuning能快速搞定。
三、LoRA(低秩适应):给模型穿“智能外套”
LoRA是个更聪明的方法。它不直接改模型的参数,而是在每个关键部位加一组“低秩矩阵”(可以理解为小配件),只调这些配件,原模型一动不动。就像给模型穿上一件“智能外套”,不用大改内部结构就能适应新任务。
1、怎么做?
-
加载预训练的LLM模型。
-
在模型的关键层(比如注意力机制部分)加上一组小矩阵。
-
冻住原模型的所有参数,只调这些新加的小矩阵。
-
任务数据跑起来时,小矩阵和原参数配合,输出结果。
2、优点
-
超高效:调的参数比Full-tuning少几百倍,训练快又省资源。
-
效果好:很多任务上跟Full-tuning差不多,甚至更好。
-
稳得住:保留原模型知识,不容易过拟合。
3、缺点
-
某些特殊任务可能比不上Full-tuning。
-
假设任务能用小矩阵搞定,不一定每次都对。
4、适合场景
大部分NLP任务,比如文本分类、问答等,LoRA都是性价比超高的选择。
四、QLoRA(量化低秩适应):轻量化“智能外套”
QLoRA是LoRA的升级版。它先把模型“压缩”一下(把参数从高精度数字变成低精度整数),再用LoRA的方法加小矩阵调整。就像给LoRA的“智能外套”减了肥,更轻便省资源。
1、怎么做?
-
先把预训练模型压缩,参数变小体积。
-
在压缩后的模型上加低秩矩阵,像LoRA那样调。
-
只动这些小矩阵,原模型参数不动。
-
用的时候,压缩模型和小矩阵一起工作,输出结果。
2、优点
-
体积小:模型缩水好几倍,存起来部署起来都方便。
-
跑得快:用整数运算,推理速度飞起。
-
效率高:跟LoRA一样,调的参数少。
3、缺点
-
压缩可能会丢点性能,任务复杂时得小心。
-
操作稍微复杂点,需要懂点量化技巧。
4、适合场景
资源特别紧张的地方,比如手机、边缘设备,QLoRA能大显身手。
五、总结:怎么选最适合你的方法?
这四种方法就像工具箱里的不同家伙事儿,各有各的用处:
-
Full-tuning:数据多、任务难、设备好,追求极致效果就选它。
-
Freeze-tuning:数据少、任务简单、资源有限,快速上手的好选择。
-
LoRA:大多数情况下的“万能钥匙”,效率和效果兼得。
-
QLoRA:资源紧巴巴时,比如移动设备上跑模型,选它准没错。
希望这篇文章能帮你搞清楚LLM微调的门道,找到最适合自己的方法,让模型在你的项目里发挥最大威力!后面的两篇文章中将详细讲解LoRA和QLoRA,如果你有啥疑问或者不同的看法,随时留言聊聊吧!
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓