计算机相关专业的毕业设计选择思路以及代码实现

本文介绍了一种针对轻量级人像分割模型的改进方法,适合计算机相关专业的毕业设计。利用深度学习,特别是计算机视觉中的目标分割技术,提供了一个易于实现且具有高精度、快速推理速度和良好通用性的模型。模型支持在移动设备上部署,并可通过百度飞桨Paddle框架进行训练,节省成本。此外,提供了实现思路文档和代码,帮助学生快速完成毕业论文,包括数据集、创新点和论文写作的指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般而言,1月份就要进行开题报告的撰写的,当然,由于学校不一样,开题的时间也不一样,但是,无论怎么样,这也意味着各位大四的学生需要完成毕业论文的撰写了。

但是,可能这边,由于考研或者是考公之类的事情耽搁,许多同学都没有在当前就完成了毕业论文所需要的工作量,因此,结合我以前的毕业设计经验,为还没有完成毕业设计的同学,提供一个可行的思路。

大家都知道,最近深度学习成为了十分热门的方向,无论是高校,还是公司,深度学习的应用都是十分广泛的,那么作为一名计算机相关专业的同学,选择使用深度学习作为自己的毕业论文课题,不仅合理,同时也能减轻自己的学习成本。

从事深度学习的人有很多,资料更是数不胜数,因此,大家能轻松的找到合适的资料或者是开源代码进行魔改,从而完成自己的毕业设计。

那么,最为常见的深度学习应用,无疑会有计算机视觉(Computer Vision, CV)的一席之地,而CV的三大基本领域,目标检测,目标分割以及图像分类也就是可以作为大家毕业设计的选题。

我今天给大家带来一个思路就是对轻量级人像分割模型进行改进,模型代码以及实现思路文档也写完了,有需要可以去看看。

人像分割任务是指将人物和背景在像素级别进行区分图像分割的经典任务。 一般而言,人像分割任务可以分为两类:针对半身人像的分割,简称肖像分割;针对全身和半身人像的分割,简称通用人像分割。

对于肖像分割和通用人像分割,本次模型具有分割精度高、推理速度快、通用型强的优点。而且该

模型框架图:</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值