【pytorch】批处理

import torch
import torch.utils.data as Data

BATCH_SZIE = 3
x = torch.linspace(1,10,10)
y = torch.linspace(10,1,10)
# print(x) # tensor 类型,可以直接转为numpy

torch_dataset = Data.TensorDataset(x, y)

loader = Data.DataLoader(
    dataset=torch_dataset,
    batch_size=BATCH_SZIE,
    shuffle=True,# true表示数据每次epoch是打乱顺序抽样的
    # shuffle=False,# False表示数据每次epoch是打乱顺序抽样的
    num_workers=2, # 每次训练有两个线程进行的?????????????
)

if __name__ == '__main__': # 使用该if正常运行,win10下可以运行
    for epoch in range(3): # 整体10个数据训练3次
        for step,(batch_x,batch_y) in enumerate(loader):# 因为总的数据是10,BATCH_SZIE是5,所以step的数目是2,两步完成一次训练,enumerate表示每一步都添加一个索引
            print('epoch:',epoch,'|step : ',step,'|batch_x:',batch_x.numpy(),'|batch_y:',batch_y.numpy())

这里写图片描述
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值