【百面机器学习】L1和L2正则化---未解决贝叶斯先验

角度一:解空间形状

也是最常见的答案
为什么会转变为解空间问题呢?
KKT条件:“带正则项”和“带约束条件”是等价的。
为了约束w的可能取值空间从而防止过拟合, 我们为该最优化问题加上一个约束.
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

角度二:函数叠加

  • 原始目标函数曲线-棕色:最小值点在蓝色处,显然非0;
  • L1曲线-绿色曲线:最小值在红色处,为0;
  • L2曲线-黄色曲线:最小值在黄色处,非0;
    在这里插入图片描述
    L1:求导,原点左边递减,右边递增即可说明最小点在原点处。
    L ( w ) = l ( w ) + C ∣ w ∣ L(w) = l(w) + C|w| L(w)=l(w)+Cw求导, C ∣ w ∣ C|w| Cw在原点左边为-C,在原点右边为C,因此,只要原目标函数的导数小于C,那么带正则项的始终是递减的,在右边始终是递增的。最小值点自然在原点处。
    L2 :
    如果想让L2在原点处导数为0,那么原目标函数也必须在原点处导数为0。概率相对于L1大大减小。所以只有减小 w w w的功能。

角度三:贝叶斯先验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值