鲁棒性|噪声|贝叶斯公式

博客介绍了鲁棒性,即对数据集中异常值保持稳定可靠的性质,常见于鲁棒性控制实验。还提到深度神经网络依赖高质量标记数据,训练数据中的标记噪声会降低模型准确性,学界正尝试理解并克服该问题。此外,给出了贝叶斯定理相关链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.鲁棒性:

鲁棒性指对数据集中的异常值也能保鲁棒性稳定可靠的性质称为鲁棒性。常见的应用有鲁棒性控制实验。

2.噪声数据(noisy labels):

深度神经网络的成功依赖于高质量标记的训练数据。训练数据中存在标记错误(标记噪声,即Noisy Labels)会大大降低模型在干净测试数据上的准确性。不幸的是,大型数据集几乎总是包含带有不正确或不准确的标签。这导致了一个悖论:一方面,大型数据集对于深度网络的训练是非常必要的,而另一方面,深度网络往往会记住训练标签噪声,从而在实践中导致较差的模型性能。
学界已经意识到这个问题的重要性,一直在试图理解理解标签噪声,和发明新的鲁棒学习方法来克服它们。

https://zhuanlan.zhihu.com/p/195637841?utm_source=wechat_session

3.贝叶斯定理:

https://www.zhihu.com/question/61298823/answer/1545994922

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值