1.鲁棒性:
鲁棒性指对数据集中的异常值也能保鲁棒性稳定可靠的性质称为鲁棒性。常见的应用有鲁棒性控制实验。
2.噪声数据(noisy labels):
深度神经网络的成功依赖于高质量标记的训练数据。训练数据中存在标记错误(标记噪声,即Noisy Labels)会大大降低模型在干净测试数据上的准确性。不幸的是,大型数据集几乎总是包含带有不正确或不准确的标签。这导致了一个悖论:一方面,大型数据集对于深度网络的训练是非常必要的,而另一方面,深度网络往往会记住训练标签噪声,从而在实践中导致较差的模型性能。
学界已经意识到这个问题的重要性,一直在试图理解理解标签噪声,和发明新的鲁棒学习方法来克服它们。
https://zhuanlan.zhihu.com/p/195637841?utm_source=wechat_session
3.贝叶斯定理:
https://www.zhihu.com/question/61298823/answer/1545994922