[51Nod 1035 最长的循环节] 循环小数的性质

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ACMore_Xiong/article/details/53841575

[51Nod 1035 最长的循环节] 循环小数的性质

知识点:数论 循环小数の性质 欧拉公式

1. 题目链接##

[51Nod 1035 最长的循环节]

2. 题意描述

正整数k的倒数1/k,写为10进制的小数如果为无限循环小数,则存在一个循环节,求<=n的数中,倒数循环节长度最长的那个数,假如存在多个最优的答案,输出所有答案中最大的那个数。
1/6= 0.1(6) 循环节长度为1
1/7= 0.(142857) 循环节长度为6
1/9= 0.(1) 循环节长度为1
(10n1000)

3. 解题思路

首先,需要介绍一下循环小数的几个性质。证明论文《康明昌-循环小数

  1. 循环小数的每个循环节长度为偶数,(记为2k),那么每个循环节中第i1ik个数字 + 第(i+k)个数字之和为9
  2. 如果p是质数,并且d1p的循环节的位数,则d可以整除p1
  3. 如果1b<aa没有2或者5的质因数,并且ab互质,那么ba的循环节位数等于:min{eN:10e1(moda)}
  4. 如果1b<aa没有2或者5的质因数,并且ab互质,那么ba的循环节位数必整除ψ(a)(a);
  5. 如果n,m3, 25都不整除mn,并且nm是互质的正整数,则1mn的循环位数是1n1m循环小数位数的最小公倍数;
  6. ,其他定理可以参考论文。

在这个题,我们需要用到的结论就是第3条
需要特殊处理的是,分母含25的因数。如1235。可以先将25的因数提出来:

1235=1547=247110

1235的循环位数是跟247是一样多的。而247循环位数也正是147的循环位数。
数据比较小,所以暴力枚举e即可。

4. 实现代码

#include <bits/stdc++.h>
using namespace std;

typedef pair<int, int> PII;

const int MAXN = 1000 + 5;

int n;

int q_pow(int a, int b, int mod) {
    int ret = 1;
    while(b > 0) {
        if(b & 1) ret = ret * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ret;
}

int calc(int x) {
    while((x & 1) == 0) x >>= 1;
    while(x % 5 == 0) x /= 5;
    if(x == 1) return 1;
    int e = 1;
    while(q_pow(10, e, x) != 1) e ++;
    return e;
}

PII ans[MAXN];
void init() {
    ans[1] = PII(1, 0);
    for(int i = 2; i < MAXN; i++) {
        int z = calc(i);
        if(ans[i - 1].second <= z) ans[i] = PII(i, z);
        else ans[i] = ans[i - 1];
    }
}

int main() {
#ifdef ___LOCAL_WONZY___
    freopen("input.txt", "r", stdin);
#endif // ___LOCAL_WONZY___
    init();
    while(~scanf("%d", &n)) {
        printf("%d\n", ans[n].first);
    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页