有一个体育馆,座位呈环状,想象下,貌似体育馆都是这样的,每一列有300个座位,按逆时钟方向编号为1~300,假设行数无穷大。
某一天,有N个人(编号为1~N)来到这个体育馆看一场赛事,主办方提出了M个要求,要求的格式是"A B X",表示的是,假设A坐在编号为i的列,则B必须坐在编号为(i+x)%300的列上,模300是因为座位呈环状。。这些要求里有一些是错误的,只有和前面的要求产生冲突时才算错误,其它都是正确的。程序要输出错误的要求个数。
读入一个要求,看看A和B的差是否确定或是否可以根据之前的一些要求推出,即是否在同一个集合里。如果不是,则确定A和B的差,即把A所在集合和B所在集合合并为同一个集合并更新集合中每个结点相对于新根的差(查找时在路径压缩过程中分别更新两个集合的非根结点相对于根结点的差,合并时更新旧根相对于新根的差);如果A和B已经在同一个集合里,那么判断(B-A+300)%300是否等于X,如果不相等,则该要求是错误的。另外,要注意取模操作的一些细节。
46ms AC。。
#include <stdio.h>
#define MAX 50000
int p[MAX+5],rank[MAX+5],dif[MAX+5];
int A,B,X;
int find(int x){
int r,t,i,tot;
r=x;
tot=0;
while(r!=p[r]){
tot=(tot+dif[r])%300;
r=p[r];
}
i=x;
while(i!=r){
tot=(tot-dif[i]+300)%300;
dif[i]=(dif[i]+tot)%300;
t=p[i];
p[i]=r;
i=t;
}
return r;
}
void merge(int ra,int rb){
if(rank[ra]==rank[rb]){
p[rb]=ra;
rank[ra]++;
dif[rb]=(X-dif[B]+dif[A]+300)%300;
}else{
if(rank[ra]>rank[rb])
p[rb]=ra,dif[rb]=(X-dif[B]+dif[A]+300)%300;
else
p[ra]=rb,dif[ra]=(dif[B]-dif[A]-X+600)%300;
}
}
void init(int n){
int i;
for(i=1;i<=n;i++)
p[i]=i,dif[i]=rank[i]=0;
}
void scani(int &num){
char ch;
int flag=1;
while(ch=getchar(),(ch>'9'||ch<'0')&&(ch!='-'));
if(ch=='-')
flag=-1,num=0;
else
num=ch-'0';
while(ch=getchar(),ch<='9'&&ch>='0')
num=num*10+ch-'0';
num*=flag;
}
int main(){
int N,M,ra,rb,ans;
while(~scanf("%d%d",&N,&M)){
init(N);
ans=0;
while(M--){
scani(A),scani(B),scani(X);
ra=find(A),rb=find(B);
if(ra!=rb)
merge(ra,rb);
else{
if((dif[B]-dif[A]+300)%300!=X)
ans++;
}
}
printf("%d\n",ans);
}
return 0;
}