(LightOJ - 1236)Pairs Forming LCM(素数唯一分解定理)

题目链接:Pairs Forming LCM - LightOJ 1236 - Virtual Judge

中文题意:给定一个n求满足lcm(a,b)的数对个数,lcm代表最小公倍数,且(a,b)和(b,a)视为同一数对。

分析:设n=p1^n1+p2^n2+……+pm^nm(m是下标)

则a和b分别可以表示为

a=p1^a1+p2^a2+……+pm^am

b=p1^b1+p2^b2+……+bm^bm

易知,若n=lcm(a,b),则有max(ai,bi)=ni,也就是说对于n的某一质因子p,a和b中含有p因子乘方的最大值等于n中含有p因子的乘方,那对于每一个pi因子,ai和bi中必有一个为ni,另一个就是0~ni中的任意一个数,所以一共有2*(ni+1)-1=2*ni+1(因为两者都为ni是一种清空),但是满足a<=b的情况数除了a=b=n这种情况之外,其他的都是满足a<b的情况数等于a>b的情况数,也就是除了(n,n)这个数对以外的数对数目除以2即可,也就是(cal(n)-1)/2+1,最后加上(n,n)这一种情况。

下面是代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
const int N=1e7+9;
bool vis[N];
int prime[N],cnt;
void init()
{
	for(int i=2;i<N;i++)
	{
		if(!vis[i]) prime[++cnt]=i;
		for(int j=1;j<=cnt&&i*prime[j]<N;j++)
		{
			vis[i*prime[j]]=true;
			if(i%prime[j]==0) break;	
		}
	}
}
ll cal(ll n)
{
	ll ans=1;
	for(int i=1;i<=cnt&&prime[i]*prime[i]<=n;i++)
	{
		ll count=0;
		while(n%prime[i]==0)
		{
			n/=prime[i];
			count++;
		}
		ans*=(2*count+1);
	}
	if(n>1) ans*=(2*1+1);//还有n这个质因数
	return ans; 
}
int main()
{
	init();
	int T;
	cin>>T;
	for(int _=1;_<=T;_++)
	{
		ll n;
		scanf("%lld",&n);
		printf("Case %d: %lld\n",_,cal(n)/2+1);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值