题目链接:Pairs Forming LCM - LightOJ 1236 - Virtual Judge
中文题意:给定一个n求满足lcm(a,b)的数对个数,lcm代表最小公倍数,且(a,b)和(b,a)视为同一数对。
分析:设n=p1^n1+p2^n2+……+pm^nm(m是下标)
则a和b分别可以表示为
a=p1^a1+p2^a2+……+pm^am
b=p1^b1+p2^b2+……+bm^bm
易知,若n=lcm(a,b),则有max(ai,bi)=ni,也就是说对于n的某一质因子p,a和b中含有p因子乘方的最大值等于n中含有p因子的乘方,那对于每一个pi因子,ai和bi中必有一个为ni,另一个就是0~ni中的任意一个数,所以一共有2*(ni+1)-1=2*ni+1(因为两者都为ni是一种清空),但是满足a<=b的情况数除了a=b=n这种情况之外,其他的都是满足a<b的情况数等于a>b的情况数,也就是除了(n,n)这个数对以外的数对数目除以2即可,也就是(cal(n)-1)/2+1,最后加上(n,n)这一种情况。
下面是代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
const int N=1e7+9;
bool vis[N];
int prime[N],cnt;
void init()
{
for(int i=2;i<N;i++)
{
if(!vis[i]) prime[++cnt]=i;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
vis[i*prime[j]]=true;
if(i%prime[j]==0) break;
}
}
}
ll cal(ll n)
{
ll ans=1;
for(int i=1;i<=cnt&&prime[i]*prime[i]<=n;i++)
{
ll count=0;
while(n%prime[i]==0)
{
n/=prime[i];
count++;
}
ans*=(2*count+1);
}
if(n>1) ans*=(2*1+1);//还有n这个质因数
return ans;
}
int main()
{
init();
int T;
cin>>T;
for(int _=1;_<=T;_++)
{
ll n;
scanf("%lld",&n);
printf("Case %d: %lld\n",_,cal(n)/2+1);
}
return 0;
}