题目:http://acm.hdu.edu.cn/showproblem.php?pid=4746
题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<=n, 1<=b<=m)
分析:设A(d):gcd(a, b)=d的有多少种
设B(j): gcd(a, b)是j的倍数的有多少种,易知B(j) = (n/j)*(m/j)
则由容斥原理得:(注:不同行的μ是不相同的,μ为莫比乌斯函数)
A(1) = μ(1)*B(1) + μ(2)*B(2) + μ(3)*B(3) + ... + μ(p1*p2...)*B(p1*p2...)
A(2) = μ(1)*B(1*2) + μ(2)*B(2*2) + μ(3)*B(3*2) + ... + μ(p1*p2..)*B(p1*p2..*2)
...
A(d) = μ(1)*B(1*d) + μ(2)*B(2*d) + μ(3)*B(3*d) + ... + μ(p1*p2..)*B(p1*p2..*d)
ans = A(1)+A(2)+...+A(d) = F(1)*B(1) + F(2)*B(2) + ... + F(p1*p2..)*B(p1*p2..)
于是可以枚举公约数i{表示A(i)},利用筛法找出i的倍数j,i对B(j)的贡献系数为:F(j)+=μ(j/i)
总之,求出B(j)的总贡献系数F(j)即可得答案:F(1)*B(1)+F(2)*B(2)+...+F(n)*B(n)
上面没有限制gcd的素因子个数,要限制其实不难,给系数加多一维即可:
F(d)(p)表示:素因子个数<=p时,对B(d)的贡献系数
分块加速思想
你可以再纸上模拟一下:设d在[i, n/(n/i)]的区间上,则该区间内所有的n/d都是一样的。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
#define LL long long
#define M 500005
#define N 19
//返回n中有多少个x因子
int cal(int n, int x)
{
int res = 0;
do
{
++res;
n /= x;
}
while (n % x == 0);
return res;
}
//备注:分块加速求解需要求前缀和
//F[i][j]: 表示素因子个数<=j条件下的莫比乌斯前缀和:μ(1)+μ(2)+...+μ(i)
int F[M][N];
int num[M]; //num[i]: i中含有多少个素因子
int h[M]; //h[i]: -1表示存在平方因子,否则表示有多少种素因子
//莫比乌斯函数的定义
int mob(int n)
{
if (h[n] == -1) return 0; //存在平方因子时,μ(n)=0
if (h[n] & 1) return -1; //奇数个不同素数之积,μ(n)=-1
return 1; //偶数个不同素数之积,μ(n)=1
}
int main()
{
int t, n, m, p, i, j;
//筛法算出num[]以及h[]
for (i = 2; i < M; i++)
{
if (num[i]) continue;
for (j = i; j < M; j+=i)
{
int tp = cal(j, i);
num[j] += tp;
if (tp > 1) //j中含有多个i,必然存在平方因子
{
h[j] = -1;
}
else if (h[j] >= 0)
{
++h[j];
}
}
}
//枚举i作为公因子,对B(j)的贡献值为:mob(j/i)
for (i = 1; i < M; i++)
{
for (j = i; j < M; j+=i)
{
F[j][num[i]] += mob(j/i);
}
}
//为了表示素因子数<=j的意义,求j的前缀和
for (i = 1; i < M; i++)
{
for (j = 1; j < N; j++)
{
F[i][j] += F[i][j-1];
}
}
//为了分组加速求解,求i的前缀和
for (i = 1; i < M; i++)
{
for (j = 0; j < N; j++)
{
F[i][j] += F[i-1][j];
}
}
scanf("%d", &t);
while (t--)
{
scanf("%d%d%d", &n, &m, &p);
LL ans = 0;
if (p >= N)
{
ans = (LL)n*m;
}
else
{
if (n > m)
{
n ^= m;
m ^= n;
n ^= m;
}
for (i = 1; i <= n; i = j + 1)
{
j = min(n/(n/i), m/(m/i));
ans += ((LL)F[j][p]-F[i-1][p])*(n/i)*(m/i);
}
}
printf("%I64d\n", ans);
}
return 0;
}