三次方程,Lagrange resolvent, Galois理论

三次方程的Galois群与求根公式

  1. 如果三次方程是像 t 3 = a t^3=a t3=a这样,那直接开根号就能求解(一个实根,加一对共轭复根). 如果能够猜出三次方程 t 3 + a t 2 + b t + c = 0 t^3+at^2+bt+c=0 t3+at2+bt+c=0的一个根 t 1 t_1 t1,那么作多项式除法,找出商 q ( t ) = t 2 + d t + e q(t)=t^2+dt + e q(t)=t2+dt+e, 问题化为求解一元二次方程 q ( t ) = 0 q(t)=0 q(t)=0. 此时根据 q ( t ) q(t) q(t)的判别式是非负还是负数,得到两种情况:如果判别式非负,那么原来的三次方程在基域上有三个根(计算重数),此时Galois群只有一个元素(恒等映射);如果判别式是负数,那么Galois群是2阶的,两个元素一个是恒等映射,另一个是对调两个共轭的复根(而保持基域所有元素不动).

  2. 回忆Vieta定理,即多项式的根与系数的关系. 这个定理的一般形式,是说多项式的系数,能够表达成它的根的(多变量的)对称多项式. 例如,对三次多项式 t 3 + a t 2 + b t + c = 0 t^3+at^2+bt+c=0 t3+at2+bt+c=0, 设它的三个根是 t 1 , t 2 , t 3 t_1, t_2, t_3 t1,t2,t3, 那么 t 3 + a t 2 + b t + c = ( t − t 1 ) ( t − t 2 ) ( t − t 3 ) . t^3+at^2+bt+c=(t-t_1)(t-t_2)(t-t_3). t3+at2+bt+c=(tt1)(tt2)(tt3).比较两边系数可知 − a = t 1 + t 2 + t 3 , b = t 1 t 2 + t 2 t 3 + t 3 t 1 , c = − t 1 t 2 t 3 -a=t_1+t_2+t_3, b = t_1 t_2 + t_2t_3+t_3t_1, c=-t_1t_2t_3 a=t1+t2+t3,b=t1t2+t2t3+t3t1,c=t1t2t3. 像 t 1 + t 2 + t 3 , t 1 t 2 + t 2 t 3 + t 3 t 1 , t 1 t 2 t 3 t_1+t_2+t_3, t_1t_2+t_2t_3+t_3t_1, t_1t_2t_3 t1+t2+t3,t1t2+t2t3+t3t1,t1t2t3这样的表达式,如果任意调换数字1,2,3(相应的 t i t_i ti跟着调换),表达式保持不变. 这就是 对称多项式.

  3. 回忆判别式. 对于一元二次多项式 t 2 + b t + c t^2+bt+c t2+bt+c, 判别式常取做 b 2 − 4 c b^2-4c b24c. 考虑两根之差的平方 ( t 1 − t 2 ) 2 (t_1-t_2)^2 (t1t2)2, 我们有 ( t 1 − t 2 ) 2 = ( t 1 + t 2 ) 2 − 4 t 1 t 2 = b 2 − 4 c . (t_1-t_2)^2 = (t_1+t_2)^2 - 4t_1t_2 = b^2 -4c. (t1t2)2=(t1+t2)24t1t2=b24c. 定义 n n n次多项式 f ( t ) f(t) f(t) n n n个根(在某个分裂域上)记作 t 1 , … , t n t_1, \ldots, t_n t1,,tn(计算重数,即允许有某些 t i = t j t_i = t_j ti=tj). 定义 δ = ∏ 1 ≤ i < j ≤ n ( t i − t j ) , Δ = δ 2 . \delta = \prod_{1 \leq i < j \leq n} (t_i - t_j), \quad \Delta = \delta^2. δ=1i<jn(titj),Δ=δ2. Δ \Delta Δ f f f判别式.

立即可知 f ( t ) f(t) f(t)有重根当且仅当 Δ = 0 = δ \Delta = 0=\delta Δ=0=δ. (这与一元二次多项式的结论一样).

练习(1):计算 x 3 + p x + q x^3+px+q x3+px+q的判别式 Δ \Delta Δ. (答案是 − 4 p 3 − 27 q 2 = − 108 ( ( p 3 ) 3 + ( q 2 ) 2 ) -4p^3-27q^2=-108\big((\frac{p}{3})^3+(\frac{q}{2})^2\big) 4p327q2=108((3p)3+(2q)2))

  1. f ( t ) ∈ F [ t ] f(t)\in F[t] f(t)F[t] n n n次多项式而且没有重根, 而 E E E f f f F F F上的分裂域. 设 f f f E E E上的所有根是 t 1 , … , t n t_1, \ldots, t_n t1,,tn. 如果 σ ∈ G a l ( E / F ) \sigma \in Gal(E/F) σGal(E/F), 那么 f ( σ ( t 1 ) ) = σ ( f ( t 1 ) ) = σ ( 0 ) = 0 f(\sigma(t_1))=\sigma(f(t_1))=\sigma(0)=0 f(σ(t1))=σ(f(t1))=σ(0)=0. 所以 σ ( t 1 ) \sigma(t_1) σ(t1)也是 f f f的根. 由此得到从 G a l ( E / F ) Gal(E/F) Gal(E/F) f f f的全部 n n n个根的对称群 S n S_n Sn的一个单同态 σ ↦ π σ \sigma \mapsto \pi_\sigma σπσ(验证!). 于是所有 { π σ : σ ∈ G a l ( E / F ) } \{\pi_\sigma : \sigma \in Gal(E/F)\} {πσ:σGal(E/F)} S n S_n Sn内构成一个子群 G f G_f Gf, 这个子群与 G a l ( E / F ) Gal(E/F) Gal(E/F)同构.

  2. 定义:设 f ( t ) ∈ F [ t ] f(t)\in F[t] f(t)F[t] n n n次多项式而且没有重根, 而 E E E f f f F F F上的分裂域. 那么 G a l ( E / F ) Gal(E/F) Gal(E/F)的子群 G f G_f Gf称为多项式 f f f的Galois群.

练习(2):证明定理:假设基域 F F F的特征不等于 2 2 2. 那么 G f G_f Gf只含有偶置换 (即当把 G f G_f Gf看成是 S n S_n Sn的子群时, G f ⊆ A n G_f \subseteq A_n GfAn.)当且仅当 δ ∈ F \delta \in F δF.

  1. 一般的三次方程 t 3 + a t 2 + b t + c = 0 t^3+at^2+bt+c=0 t3+at2+bt+c=0, 可以令 x = t + a / 3 x=t+a/3 x=t+a/3, 将二次项消掉,变成 h ( x ) = x 3 + p x + q = 0 h(x)=x^3+px+q=0 h(x)=x3+px+q=0的形式. (验证!当然这里要假设系数 a , b , c a,b,c a,b,c所在的域 F F F的特征不等于 3 3 3.) 下面只考虑像 h ( x ) h(x) h(x)这种形式. 假设 p , q ∈ F p, q\in F p,qF F F F的特征不等于 3 3 3. 上述三次多项式在 F F F上的分裂域记作 E E E. 三个根记为 β 1 , β 2 , β 3 ∈ E \beta_1, \beta_2, \beta_3 \in E β1,β2,β3E.

  2. 我们希望考察一般情况,不希望像1中提到的那样(否则三次多项式直接化归到二次). 为此需要假设任取 h ( x ) h(x) h(x)的一个根 β \beta β, 其它两个根一定能够表达成 β σ = σ ( β ) \beta^\sigma = \sigma(\beta) βσ=σ(β)的形式,其中 σ ∈ G h \sigma \in G_h σGh. 这称为 G h G_h Gh X = { β 1 , β 2 , β 3 } X=\{\beta_1, \beta_2, \beta_3\} X={β1,β2,β3}上的作用是传递的. 不难证明,只要 h h h不可约,那么 G h G_h Gh在全部根的集合上的作用就是传递的. (这个条件也是必要的)

  3. 到此可以总结三次方程的Galois群:三次方程 f ( t ) = 0 f(t)=0 f(t)=0 F F F上有根的情况,请看1. 下设三次方程不可约且 F F F的特征不等于2. 那么 G f = A 3 G_f=A_3 Gf=A3当且仅当判别式 Δ \Delta Δ可以在 F F F内开平方. 否则 G f = S 3 G_f=S_3 Gf=S3.

: h ( x ) = x 3 − 2 ∈ Q [ x ] h(x)=x^3-2 \in \mathbb{Q}[x] h(x)=x32Q[x]. 判别式 − 108 -108 108 Q \mathbb{Q} Q上不是完全平方数. 所以 G h = S 3 G_h = S_3 Gh=S3. h ( x ) h(x) h(x) Q \mathbb{Q} Q上的分裂域是 E = Q [ 2 3 , ω ] E=\mathbb{Q}[\sqrt[3]{2}, \omega] E=Q[32 ,ω], 其中 ω \omega ω是一个本原三次单位根(例如可以取 ω = exp ⁡ ( 2 π − 1 / 3 ) = − 1 2 + − 3 2 ) \omega = \exp(2 \pi \sqrt{-1}/3)=-\frac{1}{2}+\frac{\sqrt{-3}}{2}) ω=exp(2π1 /3)=21+23 ). 设 S 3 S_3 S3由二阶元 τ \tau τ与三阶元 σ \sigma σ生成,其中 τ σ τ = σ − 1 \tau \sigma \tau=\sigma^{-1} τστ=σ1. 那么这些元素,作为 E E E Q \mathbb{Q} Q-自同构,由公式 τ ( ω ) = ω 2 = ω − 1 = ω ˉ , τ ( 2 3 ) = 2 3 , σ ( 2 3 ) = 2 3 ω , σ ( ω ) = ω \tau(\omega)=\omega^2=\omega^{-1}=\bar{\omega}, \tau(\sqrt[3]{2})=\sqrt[3]{2}, \sigma(\sqrt[3]{2})=\sqrt[3]{2}\omega, \sigma(\omega)=\omega τ(ω)=ω2=ω1=ωˉ,τ(32 =32 ,σ(32 )=32 ω,σ(ω)=ω 完全确定.

按照Galois基本定理,Galois群 G h = S 3 G_h=S_3 Gh=S3有一个正规子群 A 3 A_3 A3(由偶置换组成,或者说,由 σ \sigma σ生成的三阶循环群),由上述 τ , σ \tau, \sigma τ,σ的公式可确定其不动域 E A 3 = Q ( ω ) E^{A_3}=\mathbb{Q}(\omega) EA3=Q(ω).

  1. 解三次方程 h ( x ) = x 3 + p x + q = 0 h(x)=x^3+px+q=0 h(x)=x3+px+q=0一个很简便的方法是作代换 x = w − p 3 w x=w-\frac{p}{3w} x=w3wp (据说这是Vieta想到的), 则 h ( x ) h(x) h(x)可以化为 w 3 − p 3 27 w 3 + q = 0. w^3-\frac{p^3}{27w^3}+q=0. w327w3p3+q=0.再令 t = w 3 t=w^3 t=w3, 就化成一元二次方程 t 2 + q t − p 3 27 = 0 t^2+qt-\frac{p^3}{27}=0 t2+qt27p3=0. 由此得到 t = w 3 = − q ± q 2 + 4 p 3 27 2 = − q 2 ± q 2 4 + p 3 27 . t=w^3=\frac{-q\pm \sqrt{q^2+\frac{4p^3}{27}}}{2}=-\frac{q}{2}\pm \sqrt{\frac{q^2}{4}+\frac{p^3}{27}}. t=w3=2q±q2+274p3 =2q±4q2+27p3 .
    由此再开三次方(此时要用De-Moivre棣莫弗公式,求出所有三个复根),就能得到三个 w w w, 从而得到 h ( x ) = 0 h(x)=0 h(x)=0的解 x = w − p 3 w x=w-\frac{p}{3w} x=w3wp.

:上述解法最早Cartano (1501-1576) 发表的Ars Magna, 但现在比较公认是Tartaglia更早知道这个公式. 不过大家也承认Tartaglia也是从其他人处看到这个公式的. 当时的公式只给出实根,因为当时没有复数的概念. 不难看出方程 h ( x ) = 0 h(x)=0 h(x)=0有实根的充分条件是 q 2 4 + p 3 27 ≥ 0 \frac{q^2}{4}+\frac{p^3}{27}\geq 0 4q2+27p30.

练习: (3) 为得到上述Vieta代换,我们希望 h ( x ) h(x) h(x)能化简一些,最好能化简到可以用已知的方法写出求根公式. 为此设 x = z + w x=z+w x=z+w, 代入 h ( x ) = x 3 + p x + q h(x)=x^3+px+q h(x)=x3+px+q. 我们希望此时能化简到 z 3 + w 3 + q = 0 z^3+w^3+q=0 z3+w3+q=0的形式. 请由此说明得到Vieta代换的理由. (4)说明上述方法只会得到三个 z z z, 而不是六个. (5) 分别讨论 q 2 4 + p 3 27 \frac{q^2}{4}+\frac{p^3}{27} 4q2+27p3的符号对 h ( x ) = 0 h(x)=0 h(x)=0的根的影响.

  1. 另一个推导求根公式的方法,是使用Lagrange resolvent (拉格朗日预解式),即下面定义的式子 ( 1 , β 1 ) : = β 1 + β 2 + β 3 ,    ( ω , β 1 ) : = β 1 + ω β 2 + ω 2 β 3 ,    ( ω 2 , β 1 ) : = β 1 + ω 2 β 2 + ω β 3 . (1, \beta_1):=\beta_1+\beta_2+\beta_3, \; (\omega,\beta_1):=\beta_1+\omega \beta_2 + \omega^2 \beta_3, \; (\omega^2, \beta_1):=\beta_1 + \omega^2 \beta_2 + \omega \beta_3. (1,β1):=β1+β2+β3,(ω,β1):=β1+ωβ2+ω2β3,(ω2,β1):=β1+ω2β2+ωβ3.这里 β 1 , β 2 , β 3 \beta_1, \beta_2, \beta_3 β1,β2,β3同上,是 h ( x ) = x 3 + p x + q = 0 h(x)=x^3+px+q=0 h(x)=x3+px+q=0在分裂域上的三个根(上面的预解式当然也可以用其它根来定义. 但由于 h ( x ) h(x) h(x)的不含有二次项,所以 ( 1 , β 1 ) = 0 (1, \beta_1)=0 (1,β1)=0.).

关键的一步是看出:
命题: ( ω , β 1 ) 3 , ( ω 2 , β 1 ) 3 (\omega, \beta_1)^3, (\omega^2, \beta_1)^3 (ω,β1)3,(ω2,β1)3都是 Q ( ω ) \mathbb{Q}(\omega) Q(ω)上的元素.

练习(6):请证明这个命题. 提示:只需证明它们是 σ \sigma σ-不变的. 看下面的练习(7).

进一步,可以求出 ( ω , β 1 ) 3 + ( ω 2 , β 1 ) 3 = − 27 q ,    ( ω , β 1 ) 3 ⋅ ( ω 2 , β 1 ) 3 = ( − 3 p ) 3 . (\omega, \beta_1)^3+ (\omega^2, \beta_1)^3 = -27q, \; (\omega, \beta_1)^3 \cdot (\omega^2, \beta_1)^3= (-3p)^3. (ω,β1)3+(ω2,β1)3=27q,(ω,β1)3(ω2,β1)3=(3p)3.于是这两个数是方程 Z 2 + 27 q Z − 27 p 3 = 0 Z^2+27qZ-27p^3=0 Z2+27qZ27p3=0的根. 这就回到了9的情形. 不妨设两个根为 Z 1 = ( ω , β 1 ) 3 = − 27 2 q + 3 2 − 3 Δ ,    Z 2 = ( ω 2 , β 1 ) 3 = − 27 2 q − 3 2 − 3 Δ , Z_1=(\omega, \beta_1)^3 = -\frac{27}{2}q+\frac{3}{2}\sqrt{-3\Delta},\; Z_2=(\omega^2, \beta_1)^3 = -\frac{27}{2}q-\frac{3}{2}\sqrt{-3\Delta}, Z1=(ω,β1)3=227q+23 ,Z2=(ω2,β1)3=227q23 , 这里 Δ = − 4 q 3 − 27 p 2 \Delta = -4q^3-27p^2 Δ=4q327p2是判别式. 再通过预解式,反过来求出三个根 β j = ( 1 / 3 ) ( ω j u 1 + ω 2 j u 2 ) , j = 1 , 2 , 3 \beta_j = (1/3)(\omega^{j}u_1 + \omega^{2j}u_2), j=1, 2, 3 βj=(1/3)(ωju1+ω2ju2),j=1,2,3, 其中 u 1 = ( ω , β 1 ) , u 2 = ( ω 2 , β 1 ) u_1 = (\omega, \beta_1), u_2 = (\omega^2, \beta_1) u1=(ω,β1),u2=(ω2,β1).

:(1) 与9类似,这里只会得到三个根 (2) 我们看到,为了得到所有的根,必须要求分裂域包含了全部三次单位根.

  1. 上面两种解法本质是等价的:将解三次方程的问题,化为求解一个一元二次方程的问题。这等价于说先从 E E E退回到中间域 Q ( ω ) \mathbb{Q}(\omega) Q(ω). 这样做的好处是,两个域扩张 E / Q ( ω ) , Q ( ω ) / Q E/\mathbb{Q}(\omega), \mathbb{Q}(\omega)/\mathbb{Q} E/Q(ω),Q(ω)/Q, 都是循环扩张,即相应的Galois群是循环群. 有限次的循环扩张 K / F K/F K/F都能用根式求解, 即任意一个 α ∈ K \alpha \in K αK,在 F F F上的极小多项式,一定是像 x n − α n x^n - \alpha^n xnαn的形式.
    这里还要用到两个循环扩张 E / Q ( ω ) , Q ( ω ) / Q E/\mathbb{Q}(\omega), \mathbb{Q}(\omega)/\mathbb{Q} E/Q(ω),Q(ω)/Q的次数都是素数. 我们有下面的重要
    定理:设 p p p是一个素数. 如果域 F F F包含了全部 p p p-次单位根,那么任意一个 p p p次扩张 K / F K/F K/F一定是循环扩张.

定理:如果 L / F L/F L/F是素数次域扩张,那么任意一个 a ∈ L ∖ F a \in L \setminus F aLF F F F上生成 L L L, 即 L = F ( a ) L=F(a) L=F(a).

上述Lagrange resolvent就充当了素数次域扩张 E / Q ( ω ) E/\mathbb{Q}(\omega) E/Q(ω)的生成元的角色!

:如果三次多项式 p ( x ) = x 3 + a x 2 + b x + c p(x)=x^3+ax^2+bx+c p(x)=x3+ax2+bx+c定义在 F F F上,设 E E E是这个多项式在 F F F上的分裂域. 那么 E E E必须包含三个三次单位根. 从 F ( ω ) F(\omega) F(ω) E E E之间有一个中间域 M M M,即向 F ( ω ) F(\omega) F(ω)添加Lagrange resolvents而生成的域. 于是 G a l ( E / M ) = A 3 Gal(E/M) = A_3 Gal(E/M)=A3.

以上就是全部的讨论。下面补充几个习题。

练习:(7). 域扩张 E / Q E/\mathbb{Q} E/Q的中间域 Q ( ω ) \mathbb{Q}(\omega) Q(ω)记作 M M M. 那么 E / M E/M E/M是三次Galois扩张. G a l ( E / M ) = A 3 Gal(E/M)=A_3 Gal(E/M)=A3. 现在将 E E E看成3维 M M M线性空间. 设 A 3 A_3 A3由三阶元 σ \sigma σ生成. 由于 G a l ( E / M ) = A u t M ( E ) Gal(E/M)=Aut_M(E) Gal(E/M)=AutM(E), 于是可以将 σ \sigma σ看成 E E E(作为 M M M线性空间)的线性变换. 求线性变换 σ \sigma σ的特征值与相应的特征子空间. (提示: A 3 A_3 A3是循环群,所以是交换群)

对域扩张 M / Q M/\mathbb{Q} M/Q, 回答同样的问题. 注意这里 M / Q M/\mathbb{Q} M/Q也是Galois扩张.

我们再来解释“从 E E E退回到中间域 Q ( ω ) \mathbb{Q}(\omega) Q(ω)“. 设 β j , j = 1 , 2 , 3 \beta_j, j=1, 2,3 βj,j=1,2,3 h ( x ) = x 3 + p x + q h(x)=x^3+px+q h(x)=x3+px+q E E E上的三个根. 其中取定 β 1 \beta_1 β1为实根,并用 β 1 \beta_1 β1构造拉格朗日预解式 ( 1 , β 1 ) , u 1 = ( ω , β 1 ) , u 2 = ( ω 2 , β 1 ) (1, \beta_1), u_1 = (\omega, \beta_1), u_2 = (\omega^2, \beta_1) (1,β1),u1=(ω,β1),u2=(ω2,β1)同上.

如果 β 2 , β 3 \beta_2, \beta_3 β2,β3都是实根,则 E = Q E=\mathbb{Q} E=Q,这时没什么好讨论的. 所以假设 β 2 , β 3 = β 2 ˉ \beta_2, \beta_3 = \bar{\beta_2} β2,β3=β2ˉ是一对共轭复根, 此时Galois群 G a l ( E / Q ) = S 3 = ⟨ σ , τ ⟩ Gal(E/\mathbb{Q})=S_3=\langle \sigma, \tau\rangle Gal(E/Q)=S3=σ,τ, 其中 σ = ( 123 ) , τ = ( 23 ) \sigma=(123), \tau=(23) σ=(123),τ=(23), 即 σ \sigma σ按顺序置换三个根 β j \beta_j βj, τ \tau τ固定 β 1 \beta_1 β1, 对调 β 2 , β 3 \beta_2, \beta_3 β2,β3.

练习(6)已经给出了 u 1 3 + u 2 3 ∈ Q ( ω ) u_1^3+u_2^3 \in \mathbb{Q}(\omega) u13+u23Q(ω), 的确:

(8). 证明 τ ( u 1 ) = u 2 , τ ( u 2 ) = u 1 \tau(u_1)=u_2, \tau(u_2)=u_1 τ(u1)=u2,τ(u2)=u1, 从而 τ ( u 1 3 ) = u 2 3 \tau(u_1^3)=u_2^3 τ(u13)=u23.

由此就可以知道 u 1 3 + u 2 3 = u 1 3 + τ ( u 1 3 ) , u 1 3 ⋅ u 2 3 = ( u 1 ⋅ τ ( u 1 ) ) 3 . u_1^3 + u_2^3 = u_1^3 + \tau(u_1^3), u_1^3 \cdot u_2^3 = (u_1 \cdot \tau(u_1))^3. u13+u23=u13+τ(u13),u13u23=(u1τ(u1))3. 从而方程 Z 2 − ( u 1 3 + u 2 3 ) Z + u 1 3 ⋅ u 2 3 = 0 Z^2-(u_1^3+u_2^3)Z+u_1^3 \cdot u_2^3=0 Z2(u13+u23)Z+u13u23=0所有系数都在中间域 E A 3 E^{A_3} EA3中.

  • 8
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值