练习题-15

问题:设函数 f ( x ) = ∑ n = 0 ∞ cos ⁡ ( n x ) 2 n f(x)=\sum_{n = 0}^{\infty} \frac{\cos (nx)}{2^n} f(x)=n=02ncos(nx). 求 A = ∫ 0 2 π f 2 ( x ) d x A=\int_0^{2\pi} f^2(x) dx A=02πf2(x)dx.

解:把 f f f看成是某个周期 2 π 2\pi 2π的偶函数的Fourier展开,用Parseval等式 1 2 π ∫ 0 2 π f 2 ( x ) d x = a 0 2 + 1 2 ∑ n = 1 ∞ ( a n 2 + b n 2 ) . \frac{1}{2\pi} \int_0^{2\pi} f^2(x) dx = a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty}(a_n^2 + b_n^2). 2π102πf2(x)dx=a02+21n=1(an2+bn2).

此处 a 0 = 1 , a n = 2 − n , b n = 0 a_0=1, a_n = 2^{-n}, b_n=0 a0=1,an=2n,bn=0. 容易得到 ∑ n = 1 ∞ a n 2 = ∑ n = 1 ∞ 4 − n = 1 3 \sum_{n=1}^{\infty} a_n^2 = \sum_{n=1}^{\infty} 4^{-n} = \frac{1}{3} n=1an2=n=14n=31. 所以 A = 2 π ( 1 + 1 2 ⋅ 1 3 ) = 7 3 π A=2\pi(1+\frac{1}{2}\cdot \frac{1}{3})=\frac{7}{3}\pi A=2π(1+2131)=37π.

另解:由于 e i n x = cos ⁡ n x + i sin ⁡ n x e^{inx}=\cos n x + i \sin nx einx=cosnx+isinnx, 所以 cos ⁡ n x = e i n x + e − i n x 2 \cos nx = \frac{e^{inx} + e^{-inx}}{2} cosnx=2einx+einx. 由此求出 f ( x ) = R e ∑ n = 0 ∞ e i n x 2 n = 4 − 2 cos ⁡ x 5 − 4 cos ⁡ x f(x)=\mathrm{Re} \sum_{n=0}^{\infty} \frac{e^{inx}}{2^n} = \frac{4-2\cos x}{5-4\cos x} f(x)=Ren=02neinx=54cosx42cosx. 再直接计算定积分即可求出 A A A.

  • 19
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值