使用Serper API在LangChain中的实践
随着人工智能技术的发展,为开发者提供便捷的工具如雨后春笋般涌现。今天我们将深入探讨如何在LangChain中使用Serper Google Search API,这是一款低成本的Google搜索API,可以帮助我们获取答案框、知识图谱以及Google搜索的自然结果数据。
核心原理解析
Serper Google Search API主要分为两个部分:设置和特定的Google Serper API包装器的调用。通过与LangChain的集成,我们能够将搜索功能无缝地嵌入到自问自答系统中。
设置步骤
- 前往 serper.dev 注册一个免费账户。
- 获取API密钥,并将其设置为环境变量
SERPER_API_KEY
。
接下来,我们将介绍如何使用GoogleSerperAPIWrapper
实用工具,该工具对API进行封装以便使用。
代码实现演示
以下是一个完整的代码示例,展示如何在LangChain中利用Serper API进行搜索,并结合OpenAI的语言模型进行自问自答。
import os
from langchain_community.utilities import GoogleSerperAPIWrapper
from langchain_openai import OpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
# 设置API密钥为环境变量
os.environ["SERPER_API_KEY"] = "your-serper-api-key"
os.environ['OPENAI_API_KEY'] = "your-openai-api-key"
# 初始化语言模型
llm = OpenAI(temperature=0)
# 初始化Serper搜索工具
search = GoogleSerperAPIWrapper()
# 定义工具
tools = [
Tool(
name="Intermediate Answer",
func=search.run,
description="用于需要通过搜索获取信息时"
)
]
# 初始化自问自答代理
self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True)
# 运行示例查询
answer = self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
print(f'The final answer is: {answer}')
代码说明
GoogleSerperAPIWrapper
:封装了Serper API,提供了便捷的搜索功能。initialize_agent
:用于创建一个包含搜索功能的自问自答代理。Tool
:用来定义在自问自答过程中使用的工具。
应用场景分析
这种将搜索与自问自答结合的方式,特别适合用于需要动态获取信息的场景,如实时新闻查询、知识问答应用等。
实践建议
- 在实际开发中,请确保API密钥的安全性,不要将其直接存储在代码中。
- 充分利用代理功能,可以根据需求扩展更多的工具,提高应用的灵活性。
如果遇到问题欢迎在评论区交流。
—END—