常用信号去噪与信号回归方法的原理及MATLAB实现

常用信号去噪与回归方法的原理及MATLAB实现

一、应用背景

  “信号去噪”与“信号回归”是信号处理的基本技术。本博客针对一类特殊的问题(峰值缓变函数优化),对这两类技术展开讨论。
  峰值缓变函数是指最值附近的函数值变化十分平稳,当存在噪声干扰时,会导致优化算法的性能十分不稳定。因此,对于这类函数(信号)为了充分发挥优化算法的性能,可在前期进行“去噪”或“回归”处理。

例如:
f ( x ) = 1 1 + ( x − 1 ) 6  +  0.02 x f\left( x \right) = \frac{1}{ {1 + { {\left( {x - 1} \right)}^6}{\text{ + }}0.02x}} f(x)=1+(x1)6 + 0.02x1

该函数(信号)及其加噪后的最优解如下所示:

原始信号 加噪后信号( σ 2 σ^{2} σ2 =0.02)
在这里插入图片描述 在这里插入图片描述
x o p t x_{opt} xopt=0.68 x o p t x_{opt} xopt=1.05

接下来,便针对如何从含噪信号最大程度恢复最优解展开讨论与实验。


二、信号去噪

1、低通滤波去噪

  由于目标函数在峰值附近的缓变的,故峰值附近的频谱以低频分量为主;而噪声往往分布在高频区域。故直接进行低通滤波可在一定程度上实现去噪,而几乎不会改变峰值的特性。

原始信号 含噪信号 去噪信号
信号 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
频谱 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
最优解 x o p t x_{opt} xopt=0.68 x o p t x_{opt} xopt=1.05 x o p t x_{opt} xopt=0.66

2、小波分解去噪

2.1 Mallat金字塔算法

  Mallat金字塔算法,利用“双尺度关系”,为小波变换赋予了“多分辨率表示”的物理意义。内层分解表示信号的基本(大尺度)信息,而越往外层,分解提供越细节(小尺度)的信息。
(img-qe2s7eOo-1590065046978)(en-resource://database/10764:1)]@w=600

2.2 小波基的选取
2.2.1 小波基的种类

在这里插入图片描述
MATLAB小波基函数(MathWorks)
MATLAB中的小波基介绍(CSDN)

2.2.2 小波基的选取原则

① 正交性
② 支撑区间
  支撑区间长度是指随 时间/频率 趋于 ∞ 时,小波函数收敛到零所需的长度。
  “紧支撑”是指对于函数 f(x),如果自变量 x 在 0 附近的取值范围内,f(x) 能取到值;而在此之外,f(x) 取值为 0,那么这个函数 f(x) 就是紧支撑函数,而这个 0 附近的取值范围就叫做紧支撑集。总结为一句话就是“除在一个很小的区域外,函数取值为零,即函数有速降性”。
③ 对称性
  对称性使小波具有线性相移,这对于图像处理具有重要意义。
④ 正则性
  正则性描述小波基函数的平滑程度

2.3 小波分解去噪仿真

这里选取 7 层小波分解,内3层利用软阈值(0.014)处理,外4层利用硬阈值置0;

原始信号 含噪信号 去噪信号
信号 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
最优解 x o p t = 0.68 x_{opt}=0.68 xopt=0.68 x o p t = 1.05 x_{opt}=1.05 xopt=1.05 x o p t = 0.71 x_{opt}=0.71 xopt=0.71

3、奇异值分解去噪

3.1 信号奇异值分解去噪原理

  前面所述的傅里叶变换与小波变换,都是从信号能量入手,通过对信号进行某种分解,实现去噪。
  而借助奇异值分解(SVD)我们可以从信号结构层面进行去噪。然而,奇异值分解是针对矩阵的,这里待去噪信号仅有一个一维信号,故我们首先需要构造信号的重构矩阵

3.1.1 信号的矩阵重构

  对于信号 y ( i ) , i = 1 , 2 , . . . , N y(i) , i=1,2,...,N y(i),i=1,2,...,N,基于相空间重构理论,可以由其构造重构矩阵 A A A

[ y ( 1 ) y ( 2 ) ⋯ y ( N − L + 1 ) y ( 2 ) y ( 3 ) ⋯ y ( N − L + 2 ) ⋮ ⋮ ⋱ ⋮ y ( L ) y ( L + 1 ) ⋯ y ( N ) ] \begin{bmatrix} y(1) & y(2) & \cdots & y(N-L+1) \\ y(2) & y(3) & \cdots & y(N-L+2) \\ \vdots & \vdots & \ddots & \vdots \\ y(L) & y(L+1) & \cdots & y(N) \\ \end{bmatrix} y(1)y(2)y(L)y(2)y(3)y(L+1)y(NL+1)y(NL+2)y(N)

其中,不同的 L 选取,对应着不同尺寸的重构矩阵,一般 L 取为信号长度的一半。

3.1.2 信号奇异值分解去噪流程
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值