关于信号降噪的一些方法

      在通信系统中传输信号或在接收信号的同时,一些不需要的信号被引入到通信中,使接收机信号变差,从而影响了通信质量,一般称这些干扰称为噪声。从而,可以理解噪声是一些没有模式的信号,其特点是没有恒定的频率或振幅,且随机性强,不能完全消除。常用的信号降噪方法有以下这些:

        (1)滑动平均法(moving average)也叫做移动平均法、移动平均值滤波法等等,是一种时间域思想上的信号光滑方法。算法思路为:将该点附近的采样点做算数平均,从而作为这个点光滑后的值。

        (2)小波阈值去噪的处理方法一般有:1)强制去噪处理。该方法将小波分解结构中的高频系数全部变为零,即把高频部分全部滤掉,然后对信号进行重构处理;最后得到的去噪信号也比较平滑,但是容易丢失信号的有用成分。2)给定软/硬阈值去噪处理,阈值往往可以通过经验公式获得。

        (3)中位值法,也叫移动中位数法、中值滤波法等。优点是:在数据采样点密集,且比较平滑的情况下,中位数法可以很好地剔除离群值。缺点是不适用于噪声较大的情况;而且平滑之后,数据光滑度不足;经过中位值法处理之后,极值点会丢失。

        (4)标准差法,目的是规定一个数据波动阈值,当数据超过这个阈值的时候,便认为该数据离群。这个方法阈值的选取方法,采用窗口数据的3倍标准差。

        (5)MAD法也是定义了一个阈值,这个阈值叫做中位数绝对偏差MAD。如果超过了3倍的MAD,则认为该数据离群。

        除了上述的一些降噪的方法,针对一些特定频率的信号被视为干扰信号的话,可以通过滤波的方式将这些干扰信号去除,经典的滤波方法有以下几种:

        (1)空间域和频域滤波器通常分为四种类型的滤波器——低通、高通、带阻和带通滤波器。具体说明如下

低通滤波器:只允许通过低频细节,衰减高频细节。

高通滤波器:只允许通过高频细节,衰减低频细节。

带阻滤波器:衰减一定频率范围内的信号。允许低于某个阈值或高于另一个阈值的频率通过。

带通滤波器:只允许特定频带内的信号通过,允许高于低阈值和低于高个阈值的频率通过。

        (2)自适应滤波器

        根据噪声(或干扰)统计特性在某种误差准则下设计相应的自适应滤波器。常用的误差准则包括最小均方误差、最小二乘、最小方差等。自适应滤波器也可以看作是一种统计信号处理算法,依靠递归方式进行运算。

        (3)维纳滤波器

        维纳滤波器利用了输入信号与量测信号的统计特性,通过求解维纳-霍夫方程获得在最小均方误差准则下的最优解。但是,维纳滤波器不能对数据进行实时处理,且不适合非平稳的输入信号或者噪声。

        (4)卡尔曼滤波器

        卡尔曼滤波器是维纳滤波器的发展,它解决了没有期望响应作为参考信号和通信环境为非平稳时的状态估计问题,最早用于随机过程的参数估计,后来很快在各种最优滤波和最优控制问题中得到广泛的应用。卡尔曼滤波器是一种递归滤波算法,能够实现无期望响应下的状态估计。

        为此,许多研究工作者也提出了一些信号降噪的方法,并且取得良好的应用效果。因此,本文综述了几篇国内学者的论文如下:

        李文峰等人[1]针对奇异值分解在信号降噪时有效秩的选择问题,提出一种基于矩阵秩最小化和统计修正的信号降噪方法。首先,利用矩阵秩最小化理论将奇异值有效秩选择问题转化为秩的约束优化问题;然后,通过凸优化求解,得到干净信号的Hankel矩阵,实现一次降噪;最后,根据奇异值子集标准差对干净信号Hankel矩阵进行统计修正,进一步优化降噪效果。结果表明该方法可以有效的消除脉冲干扰和高斯噪声。

       王宏超等人[2]根据滚动轴承发生故障时呈现出循坏平稳的特性,将基于二阶循环统计量的谱相关或谱相关密度分析方法加以改进,提出一种新的时频分析方法。经仿真验证,所述方法相对于谱相关分析方法具有很强的抗噪能力;针对轴承发生故障时的调制特征,往往只需要提取出故障频率即循环调制频率而不必提取调制现象的转频,在所述方法的基础上,将其加以改进,改进后的谱分析方法只能提取出调制频率,通过滚动轴承三种故障试验验证了其具有更清晰的表达效果和更好的故障特征提取效果。

        张永庆等人[3]为改善再生相移正弦辅助经验模态分解(RPSEMD)在噪声影响下鲁棒性较差的缺陷,引入了一种广义的极小极大凹罚函数(GMC)作为1范数的替代,建立起了基于凸优化的降噪框架。将该凸优化降噪方法作为一种前处理手段,随后利用RPSEMD对预处理过的信号进行模态分解。结果表明该方法能够消除模态混叠现象的影响,有效提取轴承的故障特征频率。

       张后壮等人[4]为减小故障特征提取过程中噪声的影响,通过稀疏表示的方法来实现对滚动轴承振动信号噪声的抑制。利用稀疏表示过程中稀疏近似解的求解来达到降噪的效果。在改进L1范数的基础上,引入了一类新的非凸惩罚函数,不仅保持了目标函数的系数正则化,同时避免了低估真实解的问题。

        易灿灿[5]提出了基于凸优化的降噪和脊线鲁棒性提取方法,首先将振动信号降噪的问题视为数学优化的问题,建立了凸优化降噪的理论框架,降低了对参数选择的依赖性,利用非凸惩罚函数,实现了一维信号的稀疏表达和预处理。在此基础上,将时频变换域中最优时频系数矩阵作为凸优化问题的目标函数,利用广义最小最大凹罚函数,提取了多组分信号的最优时频系数,实现了变工况下时频脊线的鲁棒性提取,为后续同步压缩变换中脊线提取和信号重构提供了基础。

       汪兴[6]针对噪声对时频平面故障特征识别影响较大的问题,运用凸优化理论,在核范数的基础上,提出了一种参数化的非凸惩罚函数,将最优化时频系数转化为凸优化问题,在最大化保留待分析信号的原始信息的同时加快迭代速度,实现强噪声下时频变换系数矩阵的低秩估计。

 参考文献

[1] 李文峰,许爱强,戴豪民,王丰. 基于矩阵秩最小化和统计修正的信号降噪方法研究[J]. 振动与冲击,2015,34(15):38-44.

[2] 王宏超,陈进,霍柏琦,胡旭钢,王冉,周海韬,朱淼. 强抗噪时频分析方法及其在滚动轴承故障诊断中的应用[J]. 机械工程学报,2015,51(01):90-96.

[3] 张永庆,柯伟,林青云,易灿灿,马毓博. 基于凸优化的RPSEMD及其在滚动轴承故障诊断中的应用[J]. 轴承,2020,(06):51-57.

[4] 张后壮. 基于凸优化的三元经验模式分解方法及其在轴承故障诊断中的应用[D].武汉科技大学,2019.

[5] 易灿灿. 高分辨率同步压缩变换方法及其在机械故障诊断中的应用[D].武汉科技大学,2020.

[6] 汪兴. 重排矢量自适应模式分解算法及其在轴承故障诊断中的应用[D].武汉科技大学,2021.

### 回答1: 振动信号降噪信号处理的一个重要分支,MATLAB中提供了多种方法来实现振动信号降噪,其中常用的方法有以下几种: 1.小波分析法 小波分析法是一种常用的信号分析方法,该方法利用小波变换将信号分解为多个频带,然后根据信号特点选择相应的频带进行降噪处理,最后将多个频带合成为原始信号。MATLAB中提供了不同类型和长度的小波函数,用户可以根据需求选择合适的函数进行分析和处理。 2.中值滤波法 中值滤波法是一种基于排序的信号降噪方法,该方法通过对信号中的数据进行排序,取中间值作为降噪后的信号值。MATLAB中提供了median函数,该函数可以对数据进行中值滤波处理,具有简单易用,效果较好的特点。 3.自适应滤波法 自适应滤波法是一种可以根据信号特点自动调整滤波器参数的降噪方法,该方法可以在保留信号原有特征的同时去除信号中的噪声。MATLAB中提供了多种自适应滤波函数,如wiener2和adaptiveWienerfilter等,该方法在处理信号时既可以选择线性滤波器也可以选择非线性滤波器,具有较强的灵活性和实用性。 以上是MATLAB中常用的振动信号降噪方法,用户可以根据实际需求选择相应的方法进行处理,以达到降噪效果的最大化。 ### 回答2: 振动信号降噪是一种在自然界、工业制造、机械设计等领域非常重要的技术。目前,通过信号处理方法降低噪声已经成为工程领域中的一个热门话题。MATLAB作为一种常用的计算机编程软件,在信号处理领域中有着广泛的应用。本文将介绍MATLAB中常用的振动信号降噪方法,并进行详细的解释。 一、小波变换法 小波变换法是一种基于小波变换的振动信号降噪方法,它的主要原理是将“信号”和“噪声”分解为不同的频带组分,然后仅对噪声频带进行滤波处理,最后将处理后的信号重新合成为一个新的降噪信号。MATLAB中,可以使用wdenoise函数实现小波变换降噪。 二、自适应噪声滤波法 自适应噪声滤波法是一种基于自适应滤波器的振动信号降噪方法,它的主要原理是根据信号噪声的统计特性对滤波器参数进行自适应调整,从而实现对噪声的有效去除。MATLAB中,可以使用wiener2函数实现自适应噪声滤波。 三、半波整流平滑法 半波整流平滑法是一种基于半波整流和移动平均的振动信号降噪方法,它的主要原理是对信号进行半波整流操作,然后通过移动平均的形式对信号进行平滑处理,从而减少噪声的影响。MATLAB中,可以使用smooth函数实现半波整流平滑法。 四、傅里叶变换法 傅里叶变换法是一种基于傅里叶变换的振动信号降噪方法,它的主要原理是将时域信号变换到频域,然后仅保留低频成分,最后将处理后的信号重新变换至时域,得到一个新的降噪信号。MATLAB中,可以使用fft函数实现傅里叶变换法。 总之,以上介绍的几种振动信号降噪方法是MATLAB中常用的方法,每种方法都有其适用的范围和优缺点。在实际应用中,应根据实际情况选择合适的方法。同时,对于信号降噪,关键在于找到噪声信号的分界点,在此基础上选用合适的降噪方法,最终达到有效降噪的效果。 ### 回答3: MATLAB是目前工程和科学领域使用最广泛的计算工具,并且可以用于信号处理。振动信号是工程领域中常见的信号之一,但是在实际应用中,振动信号通常会受到噪声干扰,导致信号质量下降,影响信号分析和处理的准确性和可靠性。因此,如何降噪振动信号在工程中是一个很重要的问题。 下面介绍几种MATLAB中常用的振动信号降噪方法: 1. 小波去噪方法:小波变换是一种能够将非平稳信号分解为多个频率带并能够在时频域中进行分析的方法。小波去噪方法通过对振动信号进行小波变换,然后对小波系数进行处理,以去除噪声。MATLAB提供了多种小波去噪函数,如wdenoise和wden等。 2. 均值滤波方法:均值滤波是一种简单的滤波方法,通常用于去除高斯噪声。该方法通过对信号的邻域取均值,以降低噪声的影响。MATLAB中提供了filter和conv函数来实现均值滤波。 3. 自适应滤波方法:自适应滤波是一种能够自适应地调整滤波器参数以适应不同信号特性的滤波方法。该方法可以在许多情况下表现得比传统滤波器更好。MATLAB中提供了多种自适应滤波函数,如wiener2和medfilt2等。 4. 傅里叶变换方法:傅里叶变换是一种将信号从时域转换为频域的方法,可以通过频率域滤波来去除噪声。MATLAB中提供了fft和ifft函数来实现傅里叶变换和反变换,可以通过设计合适的滤波器来实现去噪效果。 综上所述,MATLAB中提供了许多不同的对振动信号进行降噪方法,根据实际情况可以选择不同的方法进行处理。对于不同的信号,也可以通过不同的降噪方法来获得更好的结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不是哆啦A梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值