在通信系统中传输信号或在接收信号的同时,一些不需要的信号被引入到通信中,使接收机信号变差,从而影响了通信质量,一般称这些干扰称为噪声。从而,可以理解噪声是一些没有模式的信号,其特点是没有恒定的频率或振幅,且随机性强,不能完全消除。常用的信号降噪方法有以下这些:
(1)滑动平均法(moving average)也叫做移动平均法、移动平均值滤波法等等,是一种时间域思想上的信号光滑方法。算法思路为:将该点附近的采样点做算数平均,从而作为这个点光滑后的值。
(2)小波阈值去噪的处理方法一般有:1)强制去噪处理。该方法将小波分解结构中的高频系数全部变为零,即把高频部分全部滤掉,然后对信号进行重构处理;最后得到的去噪信号也比较平滑,但是容易丢失信号的有用成分。2)给定软/硬阈值去噪处理,阈值往往可以通过经验公式获得。
(3)中位值法,也叫移动中位数法、中值滤波法等。优点是:在数据采样点密集,且比较平滑的情况下,中位数法可以很好地剔除离群值。缺点是不适用于噪声较大的情况;而且平滑之后,数据光滑度不足;经过中位值法处理之后,极值点会丢失。
(4)标准差法,目的是规定一个数据波动阈值,当数据超过这个阈值的时候,便认为该数据离群。这个方法阈值的选取方法,采用窗口数据的3倍标准差。
(5)MAD法也是定义了一个阈值,这个阈值叫做中位数绝对偏差MAD。如果超过了3倍的MAD,则认为该数据离群。
除了上述的一些降噪的方法,针对一些特定频率的信号被视为干扰信号的话,可以通过滤波的方式将这些干扰信号去除,经典的滤波方法有以下几种:
(1)空间域和频域滤波器通常分为四种类型的滤波器——低通、高通、带阻和带通滤波器。具体说明如下
低通滤波器:只允许通过低频细节,衰减高频细节。
高通滤波器:只允许通过高频细节,衰减低频细节。
带阻滤波器:衰减一定频率范围内的信号。允许低于某个阈值或高于另一个阈值的频率通过。
带通滤波器:只允许特定频带内的信号通过,允许高于低阈值和低于高个阈值的频率通过。
(2)自适应滤波器
根据噪声(或干扰)统计特性在某种误差准则下设计相应的自适应滤波器。常用的误差准则包括最小均方误差、最小二乘、最小方差等。自适应滤波器也可以看作是一种统计信号处理算法,依靠递归方式进行运算。
(3)维纳滤波器
维纳滤波器利用了输入信号与量测信号的统计特性,通过求解维纳-霍夫方程获得在最小均方误差准则下的最优解。但是,维纳滤波器不能对数据进行实时处理,且不适合非平稳的输入信号或者噪声。
(4)卡尔曼滤波器
卡尔曼滤波器是维纳滤波器的发展,它解决了没有期望响应作为参考信号和通信环境为非平稳时的状态估计问题,最早用于随机过程的参数估计,后来很快在各种最优滤波和最优控制问题中得到广泛的应用。卡尔曼滤波器是一种递归滤波算法,能够实现无期望响应下的状态估计。
为此,许多研究工作者也提出了一些信号降噪的方法,并且取得良好的应用效果。因此,本文综述了几篇国内学者的论文如下:
李文峰等人[1]针对奇异值分解在信号降噪时有效秩的选择问题,提出一种基于矩阵秩最小化和统计修正的信号降噪方法。首先,利用矩阵秩最小化理论将奇异值有效秩选择问题转化为秩的约束优化问题;然后,通过凸优化求解,得到干净信号的Hankel矩阵,实现一次降噪;最后,根据奇异值子集标准差对干净信号Hankel矩阵进行统计修正,进一步优化降噪效果。结果表明该方法可以有效的消除脉冲干扰和高斯噪声。
王宏超等人[2]根据滚动轴承发生故障时呈现出循坏平稳的特性,将基于二阶循环统计量的谱相关或谱相关密度分析方法加以改进,提出一种新的时频分析方法。经仿真验证,所述方法相对于谱相关分析方法具有很强的抗噪能力;针对轴承发生故障时的调制特征,往往只需要提取出故障频率即循环调制频率而不必提取调制现象的转频,在所述方法的基础上,将其加以改进,改进后的谱分析方法只能提取出调制频率,通过滚动轴承三种故障试验验证了其具有更清晰的表达效果和更好的故障特征提取效果。
张永庆等人[3]为改善再生相移正弦辅助经验模态分解(RPSEMD)在噪声影响下鲁棒性较差的缺陷,引入了一种广义的极小极大凹罚函数(GMC)作为1范数的替代,建立起了基于凸优化的降噪框架。将该凸优化降噪方法作为一种前处理手段,随后利用RPSEMD对预处理过的信号进行模态分解。结果表明该方法能够消除模态混叠现象的影响,有效提取轴承的故障特征频率。
张后壮等人[4]为减小故障特征提取过程中噪声的影响,通过稀疏表示的方法来实现对滚动轴承振动信号噪声的抑制。利用稀疏表示过程中稀疏近似解的求解来达到降噪的效果。在改进L1范数的基础上,引入了一类新的非凸惩罚函数,不仅保持了目标函数的系数正则化,同时避免了低估真实解的问题。
易灿灿[5]提出了基于凸优化的降噪和脊线鲁棒性提取方法,首先将振动信号降噪的问题视为数学优化的问题,建立了凸优化降噪的理论框架,降低了对参数选择的依赖性,利用非凸惩罚函数,实现了一维信号的稀疏表达和预处理。在此基础上,将时频变换域中最优时频系数矩阵作为凸优化问题的目标函数,利用广义最小最大凹罚函数,提取了多组分信号的最优时频系数,实现了变工况下时频脊线的鲁棒性提取,为后续同步压缩变换中脊线提取和信号重构提供了基础。
汪兴[6]针对噪声对时频平面故障特征识别影响较大的问题,运用凸优化理论,在核范数的基础上,提出了一种参数化的非凸惩罚函数,将最优化时频系数转化为凸优化问题,在最大化保留待分析信号的原始信息的同时加快迭代速度,实现强噪声下时频变换系数矩阵的低秩估计。
参考文献
[1] 李文峰,许爱强,戴豪民,王丰. 基于矩阵秩最小化和统计修正的信号降噪方法研究[J]. 振动与冲击,2015,34(15):38-44.
[2] 王宏超,陈进,霍柏琦,胡旭钢,王冉,周海韬,朱淼. 强抗噪时频分析方法及其在滚动轴承故障诊断中的应用[J]. 机械工程学报,2015,51(01):90-96.
[3] 张永庆,柯伟,林青云,易灿灿,马毓博. 基于凸优化的RPSEMD及其在滚动轴承故障诊断中的应用[J]. 轴承,2020,(06):51-57.
[4] 张后壮. 基于凸优化的三元经验模式分解方法及其在轴承故障诊断中的应用[D].武汉科技大学,2019.
[5] 易灿灿. 高分辨率同步压缩变换方法及其在机械故障诊断中的应用[D].武汉科技大学,2020.
[6] 汪兴. 重排矢量自适应模式分解算法及其在轴承故障诊断中的应用[D].武汉科技大学,2021.