干货!基于标签传播的域自适应

本文探讨了机器学习中的域适应问题,提出了基于Subpopulation shift的理论,通过标签传播算法实现域适应。研究显示,这种方法在多个数据集上显著提升了域适应的性能,特别是在处理分布差异较大的情况时。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击蓝字

010d13140de8d48369ed5322f7c966bb.png

关注我们

AI TIME欢迎每一位AI爱好者的加入!

机器学习中的一个核心问题是域适应。与过去的理论上不同,本文通过对不同域之间子类的分布变化进行建模,提出了关于域适应的新模型。基于这个模型,本文给出了标签传播算法的理论保障,并进一步启发了基于标签传播的域适应算法设计,在多个数据集中较已有算法取得了显著提升。

b06d7c80a2090db31a13f0b3769aa37a.png

蔡天乐:普林斯顿大学一年级PhD,研究方向为基于理论的机器学习算法设计。

个人主页:https://tianle.website/

01

背景——distribution shift介绍

在机器学习中,使用训练集对模型进行训练,使用测试集对模型训练的效果进行测试。实际应用中,训练集和测试集往往取自不同的分布,训练集和测试集之间的分布差异(distribution shifts)直接影响了模型的泛化能力。域适应问题希望在数据集分布不同的情况下仍然能够泛化。对于不同的分布差异,域适应问题有着不同的训练目标。

比如在DomainNet数据集,每一列的图像都属于同一类别,每一行的图像属于同一图像风格。我们的目标就是能够基于任意一个图像风格进行训练,而在其他图像风格进行测试时,仍然能够准确的类别预测。

7d0e31dfcb76cf50841742c8c6be18c6.png

还有下面的BREEDS数据集,源域和目标域中同一类的数据取自这一类别的不同子类导致了distribution shifts,我们的目标则变为了让分类器适应各种子类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值