干货!针对知识图谱学习的高效超参搜索算法

本文介绍了KGTuner,一种针对知识图谱学习的高效超参数搜索算法。该算法通过分析超参数性质,提出两阶段搜索策略,利用子图在第一阶段快速探索,然后在全图上进行微调,有效提升了超参数搜索效率,并在大规模知识图谱链接预测任务上取得性能提升。
摘要由CSDN通过智能技术生成

点击蓝字

3270d68a761f52213a3ded5e0a7865db.png

关注我们

AI TIME欢迎每一位AI爱好者的加入!

af9dcb8c3d744cad3cca8d01c87e9387.gif

超参数调优对于知识图谱学习是一个重要问题,会严重影响模型性能,但由于模型训练时间长,现有的超参数搜索算法往往效率低下。

为解决这一问题,我们详细地分析了不同超参数的性质,及子图到全图的迁移能力。并根据实验效果提出了两阶段的调参算法KGTuner,我们在第一阶段利用子图高效地探索大量超参数,并将性能最好的几组超参数配置迁移到全图上,在第二阶段进行微调。

实验表明,两阶段搜索算法大大提升了超参数搜索效率,在不同的大规模知识图谱链接预测任务上,均获得了性能的提升。

本期AI TIME PhD直播间,我们邀请到香港科技大学计算机系博士——张永祺,为我们带来报告分享《针对知识图谱学习的高效超参搜索算法》。

e34a3256faeb8e89be7eca2bd6f6c195.png

张永祺:

第四范式算法科学家,从事机器学习算法研究工作,主要研究方向为自动化机器学习、知识图谱表示学习与图神经网络。其自研的自动化知识图谱表示学习技术,在知识图谱的多项重要任务上达到国际领先水平,并在人工智能领域顶级会议期刊NeurIPS、TPAMI、ACL、WWW、VLDB Journal、ICDE上发表多个相关工作。他于2020年博士毕业于香港科技大学,2015年本科毕业于上海交通大学。

1

Background

Background – Knowledge Graph (KG)

首先,对于知识图谱来说,有以下背景知识。

4f4942a0a53cfaa1df4039b1df981e6d.png

用关系来度量头实体和尾实体之间的关联。作为语义图谱的KG,既要建模语义信息,也要建模结构信息。

Representative applications代表应用

e9571dabd3b99521862beff063104e40.png

Background – Knowledge Graph Learning

a40d17abb0ad126f82b3fa18ce4a6e6e.png

如上图所示,在给到一个知识图谱之后,我们希望把符号表达映射到向量表达,并学习实体之间关系的一个表示。

Advantages:

• Continuous, ease of use in ML pipeline.

• Discover latent properties.

• Efficient similarity search

Background – Machine learning on Knowledge Graph

• A scoring function F to measure the plausibility triplets

• A sampling scheme to generate negative samples S-!

• A loss function L and regularization r to define the learning problem • An optimization strategy for convergence procedure

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值