干货!解释神经网络:使用信息瓶颈识别输入特征

本文介绍了一种名为InputIBA的新方法,它利用信息瓶颈理论在输入层识别神经网络预测中的关键特征,提供更细化的模型解释,适用于各种模型架构。这种方法解决了现有信息瓶颈方法的模糊性和特征丢失问题,提高了特征归因的细粒度和准确性。
摘要由CSDN通过智能技术生成

点击蓝字

48208d9229e539735f0c9a04cc89a40e.jpeg

关注我们

AI TIME欢迎每一位AI爱好者的加入!

64cda2b50ccec08b2a5997b95be83383.gif

1e386a67e0b2852a046150edc70d353f.png

张扬:

新加坡国立大学博士生。从事可解释性机器学习研究,以第一作者身份发表相关论文于NeurIPS,MICCAI等会议。曾在德国亚琛工业大学,慕尼黑工业大学,微软亚研院进行过研究实习。

解释黑盒神经网络的一种主要方法是特征归因(feature attribution),即识别输入特征对网络预测的重要性。最近有方法提出使用信息瓶颈(information bottleneck)模型来识别特征所包含的信息并以此衡量特征的重要性。之前的方法通常通过在神经网络内部插入信息瓶颈来识别对模型预测有意义的特征。我们提出了一种在输入空间中使用信息瓶颈并识别含有有效信息的输入特征的方法。该方法可生成比以往更加细化的模型解释,并且可以应用在任意模型架构上。

1

INTRODUCTION AND MOTIVATION

可解释性的重要性

即便今日的深度学习发展迅速,各种模型也比较成熟。但是神经网络依旧是一个黑盒模型,我们对其内部的结构仍然所知甚少。这样一种不可理解的特质,使得深度网络始终无法大规模部署到医疗、金融等对错误判断非常敏感的领域。神经网络不够可信的例子有很多,比较有代表性的是美国特斯拉所采用的自动驾驶系统,有过许多因识别错目标而导致的公路事故。下图即是特斯拉的视觉系统错误的将一辆翻倒的卡车识别为蓝天而导致事故。

7f5e0e12b596f428280b3ca6cae8725d.png

以上种种,可见学界与工业界对可解释模型有需求。部署可解释模型可以帮助我们理解模型,使我们就能在部署和训练的过程中提早发现问题。也能够向监管机构更好的证明模型的行为使得模型可以通过监管部门的评估并部署到医院,保险,民生等领域。

通过可解释的模型打开“黑盒”有什么意义呢?

1. 在训练过程中指导模型朝着更好的方向去发展。

2. 让这个模型获得更好的回溯能力。

3. 实现更加安全、人性化且公平的AI模型。

下图展示了传统机器学习模型和解释模型共同应用在医疗领域上的表现。通过生成热力图,我们可以辅助医生去更好的理解模型的预测,以此减轻医生的工作量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值