AMiner 会议论文推荐第一期

AMiner平台由清华大学计算机系研发,拥有我国完全自主知识产权。平台包含了超过2.3亿学术论文/专利和1.36亿学者的科技图谱,提供学者评价、专家发现、智能指派、学术地图等科技情报专业化服务。系统2006年上线,吸引了全球220个国家/地区1000多万独立IP访问,数据下载量230万次,年度访问量超过1100万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。

IJCAI 2020 论文推荐

Diffusion Variational Autoencoders

为了消除变分自编码器(Variational Autoencoder)的拓扑障碍,作者引入了以任意流形为潜在空间的扩散变分自编码器(Diffusion Variational Autoencoders)。利用流形上布朗运动的过渡核,设计了一种扩散变分自编码器。特别地,它利用布朗运动的性质来实现对KL散度的再参数化技巧和快速逼近。
作者证明了扩散变分自编码器能够捕获合成数据集的拓扑特性。此外,作者在球面、环面、投影空间,SO(3)和嵌入圆环的R3上训练MNIST。虽然像MNIST这样的自然数据集没有具有清晰拓扑结构的潜在变量,但是在流形上训练它仍然可以突出拓扑和几何属性。

论文链接:https://www.aminer.cn/pub/5cede0f1da562983788cf9db?conf=ijcai2020?f=cs

Alt

NeurIPS 2020 论文推荐

Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search

高维黑盒优化(Black-box optimization)具有广泛的应用前景,但仍是一个具有挑战性的问题。LaNAS等最近的研究在神经网络架构搜索(NAS)中表现出了良好的性能,从经验上降低了样本的复杂度。
在本文中,作者提出了一种新的黑盒优化方法,这个方法叫LA-MCTS,将LaNAS扩展到其他领域。LA-MCTS以在线的方式使用几个样本及其函数值来学习搜索空间的划分。LaNAS采用线性划分,在每个区域进行均匀采样,而LA-MCTS采用非线性决策边界,通过学习局部模型来选择合适的候选区域。如果非线性配分函数和局部模型与真实的黑箱函数非常吻合,则可以用更少的样本达到良好的分割和候选。
通过使用现有的黑盒优化器(如BO、TuRBO)作为local models,LA-MCTS作为一种meta-algorithm,在一般的黑盒优化和强化学习基准测试中取得了良好的性能,特别是在高维问题上。

论文链接:https://www.aminer.cn/pub/5efef8b291e011ea6db8dcc0?conf=neurips2020?f=cs

Alt

EMNLP 2020 论文推荐

GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented Dialogue Systems

端到端面向任务的对话系统旨在直接从纯文本输入生成系统响应。这类系统面临两个挑战:一是如何有效地将外部知识库(KBs)纳入学习框架;二是如何准确把握对话历史的语义。
本文中作者利用知识图谱中以及对话依存关系分析树中的图结构信息来解决上述两个问题。为了有效地利用对话历史中的结构信息,作者提出了一种新的循环单元结构,该结构允许在图形上进行表示学习。为了充分利用KBs中实体之间的关系,该模型结合了基于图结构的多跳推理能力。
实验结果表明,该模型在两种不同的面向任务对话数据集上取得了优于最新模型的一致改进。

论文链接:https://www.aminer.cn/pub/5f7c3efa91e0117ac2a78960?conf=emnlp2020?f=cs
Alt

想要查看更多精彩会议论文合集,请移步AMiner顶会