RAG与LC:长上下文任务中的表现与优化策略

大模型(LLM)是一种人工智能模型,旨在理解和生成人类语言。它们在大量的文本数据上进行训练,可以执行广泛的任务,包括文本总结、翻译、情感分析等等。LLM的特点是规模庞大,包含数十亿的参数,帮助它们学习语言数据中的复杂模式。这些模型通常基于深度学习架构,如转化器,这有助于它们在各种NLP任务上取得令人印象深刻的表现。

2022年底,OpenAI 推出的基于 GPT-3.5 的大型语言模型 ChatGPT,由于其优秀的表现,ChatGPT 及其背后的大型语言模型迅速成为人工智能领域的热门话题,吸引了广大科研人员和开发者的关注和参与。
在这里插入图片描述
本周精选了5篇LLM领域的优秀论文,为了方便大家阅读,只列出了论文标题、AMiner AI综述等信息,如果感兴趣可点击查看原文,PC端数据同步(收藏即可在PC端查看),每日新论文也可登录小程序查看。

如果想要对某篇论文进行深入对话,可以直接复制论文链接到浏览器上或者直达AMiner AI页面:
https://www.aminer.cn/chat/g/explain?f=cs

1.Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach

本文对比了检索增强生成(RAG)和长上下文(LC)语言模型在处理长上下文任务中的表现,旨在结合两者的优点。通过在三个最新的LLM模型上使用各种公开数据集对RAG和LC进行基准测试,结果表明,当资源充足时,LC在平均性能上始终优于RAG。然而,RAG的计算成本显著较低,仍具有优势。基于这一观察,作者提出了Self-Route方法,这是一种简单而有效的方法,根据模型的自我反思将查询路由到RAG或LC。Self-Route方法显著降低了计算成本,同时保持了与LC相当的性能。研究结果为使用RAG和LC的LLM长上下文应用提供了指导。
在这里插入图片描述
链接:https://www.aminer.cn/pub/66a1b12601d2a3fbfc21f2de/?f=cs

2.A Comprehensive Survey of LLM Alignment Techniques: RLHF, RLAIF, PPO, DPO and More

本文全面调查了近期用于改进大型语言模型(LLM)与其生成回应之间人类期望对齐的技术,如RLHF、RLAIF、PPO、DPO等。随着自监督学习的进步、大规模预训练语料库中数十万亿个标记的可用性、指令微调和参数达数十亿的大型Transformer模型的开发,大型语言模型已能对人类查询生成事实性和连贯的回应。但训练数据的质量参差不齐可能会导致生成不期望的回应,带来了显著挑战。尽管过去两年从不同角度提出了多种改进LLM的方法,尤其是改进它们与人类期望之间的对齐,但尚未有综述文章对这些方法进行分类和详细说明。本研究旨在填补这一空白,将相关论文按不同主题进行分类,并详细解释每种对齐方法,帮助读者深入了解该领域的当前状态。
在这里插入图片描述
链接:https://www.aminer.cn/pub/66a05fdb01d2a3fbfcb0b181/?f=cs

3.Shared Imagination: LLMs Hallucinate Alike

大型语言模型(LLM)尽管在近期大量涌现,但它们的训练方法—模型架构、预训练数据和优化算法—往往非常相似。这自然引出了一个关于 resulting models 之间相似性的问题。在这篇论文中,我们提出了一个新奇的设定,想象中的问题回答(IQA),以更好地理解模型之间的相似性。在IQA中,我们要求一个模型生成纯粹虚构的问题(例如,关于物理学中完全虚构的概念),并提示另一个模型回答。令人惊讶的是,尽管这些问题完全是虚构的,但所有模型都能以极大的成功回答彼此的问题,这表明了一个“共享想象空间”,在这些模型进行这种幻觉操作期间,它们在其中运作。我们对这一现象进行了一系列的调查,并讨论了关于模型同质性、幻觉和计算创造力等方面的影响。
在这里插入图片描述
链接:https://www.aminer.cn/pub/66a0601701d2a3fbfcb24bb3/?f=cs

4.ChatQA 2: Bridging the Gap to Proprietary LLMs in Long Context and RAG Capabilities

本文介绍了ChatQA 2,一个基于Llama3的模型,旨在缩小开源大型语言模型(LLMs)与顶尖私有模型(如GPT-4-Turbo)在长上下文理解和检索增强生成(RAG)能力方面的差距。这两种能力对于LLMs处理无法一次性嵌入单条提示的大量信息至关重要,并且根据下游任务和计算预算的不同,它们相互补充。文中详细介绍了如何将Llama3-70B-base的上下文窗口从8K扩展到128K令牌的持续训练方法,以及通过三阶段指令调优过程来提高模型的指令遵循能力、RAG性能和长上下文理解能力。实验结果表明,Llama3-ChatQA-2-70B模型在许多长上下文理解任务上的准确性可与GPT-4-Turbo-2024-0409相媲美,并且在RAG基准测试中超过了它。有趣的是,我们发现最先进的长上下文检索器可以缓解RAG中的top-k上下文碎片化问题,从而进一步提高长上下文理解任务的RAG基础结果。文中还提供了使用最先进的长上下文LLMs对RAG和长上下文解决方案进行广泛比较的结果。
在这里插入图片描述
链接:https://www.aminer.cn/pub/669dbc8001d2a3fbfca4235e/?f=cs

5.RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering

这篇论文介绍了一种新的自然语言处理领域的研究课题——基于检索增强生成的问答(RAG-QA),并指出现有的用于此任务的数据集存在一些局限性。为了克服这些局限性,研究者创建了长格式鲁棒问答(LFRQA)数据集,该数据集包括由人类编写的长格式答案,这些答案将来自多个文档的短提取式答案集成到单个连贯的故事中,涵盖了七个不同领域的26K个查询和大量语料库。此外,研究者还提出了RAG-QA竞技场,通过将模型生成的答案直接与LFRQA的答案进行比较,使用大型语言模型(LLM)作为评估者。实验结果表明,RAG-QA竞技场和人类对答案质量的判断高度相关。此外,只有41.3%的LLM生成的答案被认为优于LFRQA的答案,这表明RAG-QA竞技场是一个对未来研究具有挑战性的评估平台。
在这里插入图片描述
链接:https://www.aminer.cn/pub/669dbc7501d2a3fbfca4135c/?f=cs


AMiner AI入口:
https://www.aminer.cn/chat/g/explain?f=cs

  • 4
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值