AMiner会议周刊旨在帮助大家了解人工智能领域的学术会议最新动态。
近期会议日程提醒
论文截稿时间 (东八区时间):
IJCAI2021 :2021年1月21日 19:59:59
ACL2021 :2021年2月2日 19:59:59
ICML2021:2021年2月4日 19:59:59
即将开始的会议:
AAAI 2021:2021年2月2日-9日
会议论文推荐
1.论文名称:Contrastive Transformation for Self-supervised Correspondence Learning
论文链接:https://www.aminer.cn/pub/5fd1fc6c91e011ffe17a21dd/?conf=aaai2021
所属会议:AAAI2021
推荐理由:
在本文中,作者使用野外未标记的视频进行视觉对应关系的自监督学习。该方法同时考虑视频内和视频间的表示关联,以实现可靠的对应估计。其中,视频内学习经由帧对相似性在单个视频内的帧之间转换图像内容。为了获得实例级分离的判别式表示,作者超越了视频内分析,并构建了视频间关联性,以促进跨不同视频的对比转换。通过强制视频内和视频间级别之间的转换一致性,该方法可以很好地保留细粒度的对应关系,并有效地增强实例级别的特征辨别力。该框架在一系列视觉任务(包括视频对象跟踪(VOT),视频对象分割(VOS),姿势关键点跟踪等)上超过了最新的自我监督通信方法。
2.论文名称:Reinforced Multi-Teacher Selection for Knowledge Distillation
论文链接:https://www.aminer.cn/pub/5fd7354291e011efa3cf5dde/?conf=aaai2021
所属会议:AAAI2021
推荐理由:
在自然语言处理(NLP)任务中,推理速度慢、GPU使用量巨大仍然是生产中应用预训练深度模型的瓶颈。作为一种流行的模型压缩方法,知识提炼(knowledge distillation)将知识从一个或多个大型(教师)模型转移到一个小型(学生)模型中。当提炼中有多个教师模型时,当前最先进的方法会在整个提炼中给教师模型分配一个固定的权重。此外,现有的大多数方法都给每个教师模型分配了相等的权重。在本文中,作者观察到,由于训练实例的复杂性和学生模型能力的差异,对教师模型进行差异化学习可以使学生模型提炼的性能更好。因此,作者系统地开发了一种强化方法,针对不同的训练实例动态地给教师模型分配权重,以优化学生模型的性能。
3.论文名称:The Evolution of the Manosphere Across the Web
论文链接:https://www.aminer.cn/pub/5fc99ebe9e795e122ad26d4f/?conf=aaai2021
所属会议:AAAI2021
推荐理由:
作者对Manosphere进行了大规模的描述,Manosphere是一个以 "男性问题 "为焦点的网络厌女运动团体,该团体网上蓬勃发展。通过分析来自6个论坛和51个subreddits的28.8M个帖子,作者全面描绘了Manosphere在网络上的演变过程,展示了不同社区之间多年来的联系。作者发现,如 "Pick Up Artists "和 "Men’s Rights Activist"等比较温和的旧社区,正在让位于如 "Incels "和 "Men Going Their Own Way"等更极端的社区,其中的活跃用户大量迁移。此外,作者的分析表明,这些较新的社区比较老的社区言论更毒性和厌女。
4.论文名称:When Do GNNs Work: Understanding and Improving Neighborhood Aggregation
论文链接:https://www.aminer.cn/pub/5ef96b048806af6ef2772099/?conf=ijcai2020
所属会议:IJCAI2020
推荐理由:
图神经网络(Graph Neural Networks,简称GNNs)在广泛的图相关任务有着强大的能力。虽然存在各种GNN模型,但一个关键的共同成分是邻域聚合,其中每个节点的嵌入是通过参考其邻居的嵌入来更新的。本文旨在通过提出以下问题来更好地理解这种机制。即邻区聚合是否总是必要和有益的?答案是否定的。作者刻画了两种邻区聚合无益的情况:(1)当一个节点的邻居高度不相似时;(2)当一个节点的嵌入与其邻居的嵌入已经相似时。同时作者提出了新的度量方法,对这两种情况进行量化衡量,并将其整合到自适应层模块中。实验表明,允许特定节点的聚合度比目前的GNN有显著优势。
5.论文名称:Scaling Up AND/OR Abstraction Sampling
论文链接:https://www.aminer.cn/pub/5ef96b048806af6ef277221d/?conf=ijcai2020
所属会议:IJCAI2020
推荐理由:
抽象采样(Abstraction Sampling,简称AS)是Importance Sampling的一种改进,它通过抽象概念来探索分层,将相似的节点分组为抽象状态。之前的研究表明,AS在AND/OR搜索空间上采样时表现良好;然而,现有的方案为保证无偏性,仅限于 "适当的 "抽象,以至于严重阻碍了扩展性。在本文中,作者介绍了一种新颖的AND/OR搜索空间上的抽象采样方案AOAS,该方法通过规避适当性要求,以更灵活地使用抽象。作者为分析了这种新算法的特性,在五个基准上进行了广泛的实证评估,表明它能够提供一个更强大和更有竞争力的抽象采样框架。
会议资源分享
1. IJCAI历年获奖论文汇总(39篇)
链接:https://www.aminer.cn/topic/5f6af08992c7f9be213f1ecc
2. 689篇AAAI2021论文汇总
链接:https://www.aminer.cn/conf/aaai2021
3. 23篇AAAI2021一分钟秒读论文集合
链接:https://www.aminer.cn/conf/aaai2021/videos
4. 51篇NeurIPS2020一分钟秒读论文集合
链接:https://www.aminer.cn/conf/neurips2020/videos
IJCAI近五年会议数据研究
1.根据近五年以来数据显示,男性作者占比85.49%, 女性作者占比14.51%。
2.从全球国家和地区来看,前三国家分别是中国作者占比21.84%,美国作者占比25.12%,英国作者占比7.88%,其他国家比如日本、澳大利亚、意大利、德国等都成绩斐然。
3.近五年论文录取率,呈现逐年下降趋势。
以上数据由AMiner会议系统提供,想要查看更多会议内容请点击链接:https://www.aminer.cn/conf