AMiner平台由清华大学计算机系研发,拥有我国完全自主知识产权。平台包含了超过2.3亿学术论文/专利和1.36亿学者的科技图谱,提供学者评价、专家发现、智能指派、学术地图等科技情报专业化服务。系统2006年上线,吸引了全球220个国家/地区1000多万独立IP访问,数据下载量230万次,年度访问量超过1100万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。
CVPR 2021 论文推荐
DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution(DyCo3D: 通过动态卷积对3D点云进行稳健的实例分割)
论文链接:https://www.aminer.cn/pub/5fc4c86491e011abfa2faf14/?conf=cvpr2021
推荐理由: 以往的点云实例分割的最优方法涉及自下而上的策略,其中往往包括低效的操作或复杂的流水线,例如,对过度分割的组件进行分组、引入额外的步骤进行细化、或设计复杂的损失函数。为此,作者提出了一种动态的、无建议的、数据驱动的方法,该方法可以根据实例的性质生成适当的卷积核来进行应用。为了使卷积核具有判别性,作者通过收集具有相同语义类别的同质点,并对几何中心点进行接近的投票以来探索一个大的上下文,最后利用几个简单的卷积层对实例进行解码。由于稀疏卷积引入的接受场有限,该工作还设计了一个小型的轻量级变换器来捕捉点样本之间的长程依赖性和高级交互。上述方法在ScanetNetV2和S3DIS上都取得了优质且稳定的结果,并显著提高了推理速度。
FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding(FSCE: 通过对比式提案编码进行少许目标检测)
论文链接:https://www.aminer.cn/pub/6049ecc691e01118b758f098/?conf=cvpr2021
推荐理由: 少镜头物体检测(few-shot object detection, FSOD)是指给定很少的来训练例子识别以前未见过的物体。最近的研究表明,良好的特征嵌入是达到优质少镜头学习性能的关键。作者观察到具有不同交叉点联盟(Intersection-of-Union, IoU)得分的对象类似于对比方法中使用的图像内增强。利用这种类比,作者结合监督的对比学习,在FSOD中实现了更稳健的对象表示。该工作提出了通过对比提案编码的少镜头对象检测(Few-Shot object detection via Contrastive proposals Encoding, FSCE),这是一种简单而有效的学习对比感知对象提案编码的方法,它有助于检测对象的分类。同时,作者通过对立提案编码损失(contrastive proposal encoding loss, CPE loss)来促进实例级别的类内紧凑性和类间差异以缓解误分类问题。
Teachers Do More Than Teach: Compressing Image-to-Image Models(教师做的不仅仅是教学:压缩图像到图像的模型)
论文链接:https://www.aminer.cn/pub/6045f24691e011e635243179/?conf=cvpr2021
推荐理由: 生成对抗网络(Generative Adversarial Networks, GANs)在生成高保真图像方面取得了巨大的成功。然而,由于巨大的计算成本和庞大的内存使用量,该方法的效率很低。最近在压缩GANs上的工作显示出明显的进展——他们通过牺牲图像质量或涉及耗时的搜索过程来获得更小的生成器。在这项工作中,作者旨在通过引入一个教师网络来解决上述问题,该网络提供了一个搜索空间,除了执行知识提炼外,还可以在其中找到高效的网络架构。首先,该工作重新审视了生成模型的搜索空间,在生成器中引入了基于inception的残块。其次,为了实现目标计算成本,作者提出了一步修剪算法,从教师模型中搜索学生架构,大幅降低搜索成本。最后,作者提出通过最大化教师和学生之间的特征相似度以及一个名为全局内核对齐(Global Kernel Alignment, GKA)的索引来提炼知识。
AMiner,一个具有认知智能的学术搜索引擎:https://www.aminer.cn/
#AMiner# #论文#