AMiner平台(https://www.aminer.cn)由清华大学计算机系研发,拥有我国完全自主知识产权。平台包含了超过2.3亿学术论文/专利和1.36亿学者的科技图谱,提供学者评价、专家发现、智能指派、学术地图等科技情报专业化服务。系统2006年上线,吸引了全球220个国家/地区1000多万独立IP访问,数据下载量230万次,年度访问量超过1100万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。
必读论文:https://www.aminer.cn/topic
论文集地址:https://www.aminer.cn/topic/6085694792c7f9be2133fb95
实体关系抽取是从文本中的句子里抽取出一对实体并给出实体间关系的任务。该任务的输入是一句话,输出是一个spo三元组(subject-predicate-object)。对于实体关系抽取任务,最容易想到的方法就是先抽取句子中的实体,然后在对实体对进行关系分类,从而找出spo三元组,这种思想被称作管道模型(Pipeline)。管道模型把实体关系抽取分成了两个子任务,实体识别和关系分类,两个子任务按照顺序依次执行,它们之间没有交互。在管道模型之后,可以同时进行实体识别和关系分类的联合模型被提了出来,之后的实验证明联合模型由于实现了两个子任务之间的信息交互,大大提升了实体关系抽取的效果,目前针对实体关系抽取任务的研究大多采用联合模型。而联合模型又可以细分为基于参数共享的联合模型和基于联合解码的联合模型。本文论文集包含基于统计学习的方法。
该论文集共收录18篇论文,引用最多的论文为Translating Embeddings for Modeling Multi-relational Data,引用数为3052。
AMiner,AI赋能的学术搜索平台:https://www.aminer.cn
#AMiner# #论文#