1、 论文名称:Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation
论文链接:https://www.aminer.cn/pub/60fe36095244ab9dcb35b009?f=cs
2、 论文名称:Warp Consistency for Unsupervised Learning of Dense Correspondences
论文链接:https://www.aminer.cn/pub/606eeb3e91e011aa47b6acc8?f=cs
3、 论文名称:Mining Latent Classes for Few-shot Segmentation
论文链接:https://www.aminer.cn/pub/60630f4191e0118c891f1bd9?f=cs
4、 论文名称:Human Pose Regression with Residual Log-likelihood Estimation
论文链接:https://www.aminer.cn/pub/60fe36535244ab9dcb35cd35?f=cs
5、论文名称:Rank & Sort Loss for Object Detection and Instance Segmentation
论文链接:https://www.aminer.cn/pub/60ff9e095244ab9dcb022726?f=cs
6论文名称:Rethinking and Improving Relative Position Encoding for Vision Transformer
论文链接:https://www.aminer.cn/pub/610131506750f855fce48f6a?f=cs
7论文名称:HuMoR: 3D Human Motion Model for Robust Pose Estimation
论文链接:https://www.aminer.cn/pub/609ba31691e0113c3c7692af?f=cs
8论文名称:Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
论文链接:https://www.aminer.cn/pub/6037844c91e011d7c73cd4b7?f=cs
9论文名称:Pathdreamer: A World Model for Indoor Navigation
论文链接:https://www.aminer.cn/pub/60a62b4191e0115d932bfbe5?f=cs
10论文名称:PnP-DETR: Towards Efficient Visual Analysis with Transformers
论文链接:https://www.aminer.cn/pub/6142b6125244ab9dcbc97ad5?f=cs
11论文名称:DetCo: Unsupervised Contrastive Learning for Object Detection
论文链接:https://www.aminer.cn/pub/6023d58d91e0119b5fbd981b?f=cs
12论文名称:In-Place Scene Labelling and Understanding with Implicit Scene Representation
论文链接:https://www.aminer.cn/pub/6064451791e011538305ceff?f=cs
13论文名称:A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
论文链接:https://www.aminer.cn/pub/60795d9791e011f8093d8a34?f=cs
14论文名称:Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation
论文链接:https://www.aminer.cn/pub/610780075244ab9dcb405338?f=cs
15、论文名称:Contrastive Learning for Label-Efficient Semantic Segmentation
论文链接:https://www.aminer.cn/pub/5fd8930191e0119b22c1f1ca?f=cs
16、论文名称:Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals
论文名称:https://www.aminer.cn/pub/60265eab91e011821e023c8d?f=cs
17、论文名称:MVTN: Multi-View Transformation Network for 3D Shape Recognition
论文链接:https://www.aminer.cn/pub/5fc4c4f891e011abfa2faec0?f=cs
18、论文名称:Manifold Alignment for Semantically Aligned Style Transfer
论文链接:https://www.aminer.cn/pub/5ec7a33091e0118397f3efb2?f=cs
19、论文名称:TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks
论文链接:https://www.aminer.cn/pub/5fbcefca91e01127d58ef084?f=cs
20、论文名称:Equivariant Imaging: Learning Beyond the Range Space
论文链接:https://www.aminer.cn/pub/6062ef1e91e0118c891f1953?f=cs
目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。
计算机视觉中关于图像识别有四大类任务:
(1)分类-Classification:解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。
(2)定位-Location:解决“在哪里?”的问题,即定位出这个目标的的位置。
(3)检测-Detection:解决“在哪里?是什么?”的问题,即定位出这个目标的位置并且知道目标物是什么。
(4)分割-Segmentation:分为实例的分割(Instance-level)和场景分割(Scene-level),解决“每一个像素属于哪个目标物或场景”的问题。
ICCV2021大会已于2021年10月10日到2021年10月17日在中国长沙召开,目前会议的论文都已经放出, AMiner对会议论文进行整理,查看全部论文: https://www.aminer.cn/conf/iccv2021?f=cs
AMiner是一个科技情报分析与挖掘平台,利用AI为用户高效获取和理解科研情报,拥有推荐引擎、搜索引擎、关注订阅和内容运营等多种分发方式,内容囊括论文、学者、专利、报告、会议、专题集等多种形式,涵盖计算机科学、医学、通信、地学、物理等40个学科。
不用再一个人在茫茫网络中找论文了,找论文,就上AMiner。
AMiner:https://www.aminer.cn/