1、 论文名称:Evolving Search Space for Neural Architecture Search
论文链接:https://www.aminer.cn/pub/5fbcdaee91e01127d58eee45?f=cs
论文名称:AdvRush: Searching for Adversarially Robust Neural Architectures
论文链接:https://www.aminer.cn/pub/610a359e5244ab9dcbb12867?f=cs
论文名称:BN-NAS: Neural Architecture Search with Batch Normalization
论文链接:https://www.aminer.cn/pub/611c822e5244ab9dcb5c3928?f=cs
论文名称:BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search
论文链接:https://www.aminer.cn/pub/605b17f291e0119ebe7e5cf4?f=cs
论文名称:GLiT: Neural Architecture Search for Global and Local Image Transformer
论文链接:https://www.aminer.cn/pub/60e7a03391e011dcbc23af02?f=cs
论文名称:FOX-NAS: Fast, On-device and Explainable Neural Architecture Search
论文链接:https://www.aminer.cn/pub/6125b6a95244ab9dcb41d656?f=cs
论文名称:Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift
论文链接:https://www.aminer.cn/pub/6125b0015244ab9dcb38a376?f=cs
神经结构搜索(Neural Architecture Search,NAS)是指给定一个称为搜索空间的候选神经网络结点集合,通过控制器按照某种搜索算法策略从集合中搜索出子网络结构,并使用某种性能评估策略评估性能。评估结果将返回给搜索策略,用于调整下一次的神经结构选择,迭代直到搜索出符合要求的神经网络
使用RNN作为控制器产生子网络
对子网络进行训练和评估,得到网络性能(如正确率),然后更新控制器的参数(利用强化学习 + 策略梯度)
ENAS:提高了NAS的搜索效率
ENAS将搜索空间表示为一个有向无环图(DAG),任一子图代表一个网络结构,每个结点代表局部计算,结点间的有向连接代表信息的流动
权重共享:不同的网络结构共享整个有向无环图结点上的参数,减少搜索时间
ICCV2021大会已于2021年10月10日到2021年10月17日在中国长沙召开,目前会议的论文都已经放出, AMiner对会议论文进行整理,查看全部论文: https://www.aminer.cn/conf/iccv2021?f=cs
AMiner是一个科技情报分析与挖掘平台,利用AI为用户高效获取和理解科研情报,拥有推荐引擎、搜索引擎、关注订阅和内容运营等多种分发方式,内容囊括论文、学者、专利、报告、会议、专题集等多种形式,涵盖计算机科学、医学、通信、地学、物理等40个学科。
不用再一个人在茫茫网络中找论文了,找论文,就上AMiner。
AMiner:https://www.aminer.cn/