1、 论文名称:Reinforcement Learning for Sparse-Reward Object-Interaction Tasks in a First-person Simulated 3D Environment.
论文链接:https://www.aminer.cn/pub/5f9bd99491e011dcf482d815?f=cs
2、 论文名称:BACKDOORL - Backdoor Attack against Competitive Reinforcement Learning.
论文链接: https://www.aminer.cn/pub/60912d2191e01105f877fba7?f=cs
3、 论文名称:Boosting Offline Reinforcement Learning with Residual Generative Modeling.
论文链接:https://www.aminer.cn/pub/60d3d23e91e0112ca5d1856e?f=cs
4、 论文名称:Mean Field Games Flock! The Reinforcement Learning Way.
论文链接:https://www.aminer.cn/pub/60a3bb7b91e01115219ffbd4?f=cs
5、论文名称:Ordering-Based Causal Discovery with Reinforcement Learning.
论文链接: https://www.aminer.cn/pub/6051c3aa9e795eb49a3cb228?f=cs
6论文名称:Efficient PAC Reinforcement Learning in Regular Decision Processes.
论文链接:https://www.aminer.cn/pub/60a2447991e0115ec77b9d24?f=cs
7论文名称:Average-Reward Reinforcement Learning with Trust Region Methods.
论文链接: https://www.aminer.cn/pub/60c1a40391e0112cf43c2176?f=cs
8论文名称:Data-Efficient Reinforcement Learning for Malaria Control.
论文链接: https://www.aminer.cn/pub/60da8fc20abde95dc965f767?f=cs
9论文名称:Reinforcement Learning for Route Optimization with Robustness Guarantees.
论文链接: https://www.aminer.cn/pub/60da8fc20abde95dc965f74a?f=cs
10论文名称:Dynamic Lane Traffic Signal Control with Group Attention and Multi-Timescale Reinforcement Learning.
论文链接: https://www.aminer.cn/pub/60da8fc20abde95dc965f7b3?f=cs
11论文名称:Verifying Reinforcement Learning up to Infinity.
论文链接: https://www.aminer.cn/pub/60da8fc20abde95dc965f8ba?f=cs
12论文名称:Non-decreasing Quantile Function Network with Efficient Exploration for Distributional Reinforcement Learning.
论文链接: https://www.aminer.cn/pub/60a23f8791e0115ec77b9ccc?f=cs
13论文名称:Multi-Objective Reinforcement Learning for Designing Ethical Environments.
论文链接: https://www.aminer.cn/pub/60da8fc20abde95dc965f79e?f=cs
强化学习的概念:
1、policy
策略决定了agent在特定时间的行为,将当前环境的状态state映射为行动action,对应于心理学中所谓的一套刺激-反应规则。
2、reward
每一步动作,环境都会给予agent一个奖励reward,agent唯一的目标是最大化长期获得的总奖励。奖励的大小反应了事件的好坏。奖励信号是改变策略的主要依据,如果策略选择的行动是低回报的,那么在将来,可能会更改策略来选择其他的行动。
3、value function
reward只给出了在某个状态下的即时奖励,而价值函数给出的是长期的奖励。价值函数表示的是当前的奖励和后续奖励累计的总和。
4、model
模仿环境的行为,如给定状态和行为,模型可以预测下一个状态和下一个奖励。在现实中,model可能存在,也有可能不存在。在强化学习中, model存在时称为基于模型的学习model-based,不存在时称为无模型学习model-free。
IJCAI2021会议已于2021年11月7日到2021年11月9日在中国成都举召开,目前会议的论文都已经放出, AMiner对会议论文进行整理,查看全部论文:https://www.aminer.cn/conf/ijcai2021?f=cs
AMiner是一个科技情报分析与挖掘平台,利用AI为用户高效获取和理解科研情报,拥有推荐引擎、搜索引擎、关注订阅和内容运营等多种分发方式,内容囊括论文、学者、专利、报告、会议、专题集等多种形式,涵盖计算机科学、医学、通信、地学、物理等40个学科。
不用再一个人在茫茫网络中找论文了,找论文,就上AMiner。
AMiner:https://www.aminer.cn/