被国际顶级数据挖掘会议 WebConf 2022 (CCF-A)接收的论文Designing the Topology of Graph Neural Networks: A Novel Feature Fusion Perspective从特征融合的视角设计了图神经网络的拓扑结构,因此,AMiner及时为大家整理了图神经网络在推荐系统上的应用论文合集,供参考学习。先来了解一下:
随着网络信息的爆炸式增长,推荐系统在缓解信息过载方面发挥了重要作用。由于推荐系统具有重要的应用价值,这一领域的研究一直在不断涌现。近年来,图神经网络(GNN)技术得到了广泛的关注,它能将节点信息和拓扑结构自然地结合起来。由于GNN在图形数据学习方面的优越性能,GNN方法在许多领域得到了广泛的应用。在推荐系统中,主要的挑战是从用户/项目的交互和可用的边信息中学习有效的嵌入用户/项目。由于大多数信息本质上具有图结构,而网络神经网络在表示学习方面具有优势,因此将图神经网络应用于推荐系统的研究十分活跃。
论文合集链接:https://www.aminer.cn/topic/6076435e92c7f9be217f7438?f=cs
1.Memory Augmented Graph Neural Networks For Sequential Recommendation
“我们提出了一种记忆增强图神经网络(MA-GNN)来捕获长期和短期用户的兴趣…”
PDF下载链接:https://www.aminer.cn/pub/5e5e190793d709897ce47f2b/?f=cs
2.Inductive Matrix Completion Based on Graph Neural Networks
“我们提出了一种不使用侧面信息的归纳矩阵完成模型…我们的工作表明:1)可以在不使用侧面信息的情况下训练电感矩阵完成模型,同时实现与最先进的转导方法相似或更好的性能;2)围绕(用户,项目)对的局部图形模式是该用户给予该项目的评级的有效预测因子;3) 对于推荐器系统建模,可能不需要远程依赖关系…”
PDF下载链接:https://www.aminer.cn/pub/5e5e18ad93d709897ce2654c/?f=cs
3.Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach
“本文从两个方面重新审视了基于GCN的CF模型。首先,我们从经验上证明,去除非线性将提高推荐性能,这与简单图卷积网络中的理论一致…”
PDF下载链接:https://www.aminer.cn/pub/5e5e193493d709897ce5bb7b/?f=cs
4.Graph Neural Networks for Social Recommendation
“在本文中,我们提出了一种用于社交推荐的新型图神经网络框架(GraphRec)。特别是,我们提供了一种原则性的方法,以共同捕获用户项目图中的交互和意见,并提出了框架GraphRec,该框架连贯地模拟了两个图和异构优势…”
PDF下载链接:https://www.aminer.cn/pub/5cd7fa07ced107d4c65bf2af/?f=cs
5.Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems
“我们提出了双图注意力网络,以协作学习双重社会效应的表示,其中一个由用户特定的注意力权重建模,另一个由动态和上下文感知注意力权重建模。我们还将用户域中的社交效应扩展到项目域,以便利用相关项目的信息进一步缓解数据稀疏问题…”
PDF下载链接:https://www.aminer.cn/pub/5cd7fa07ced107d4c65bf30f/?f=cs
AMiner官网:https://www.aminer.cn/?f=cs