【图神经网络在推荐系统上的应用】必读论文合集推荐

推荐系统借助图神经网络(GNN)技术,有效地结合用户与项目交互信息及拓扑结构,解决信息过载问题。论文合集涵盖不同GNN方法,如记忆增强GNN、归纳矩阵完成、线性残差GCN等,强调捕捉用户兴趣、局部图形模式和社会效应在推荐中的作用。这些研究展示了GNN在推荐系统建模中的潜力和优势。
摘要由CSDN通过智能技术生成

在这里插入图片描述
被国际顶级数据挖掘会议 WebConf 2022 (CCF-A)接收的论文Designing the Topology of Graph Neural Networks: A Novel Feature Fusion Perspective从特征融合的视角设计了图神经网络的拓扑结构,因此,AMiner及时为大家整理了图神经网络在推荐系统上的应用论文合集,供参考学习。先来了解一下:

随着网络信息的爆炸式增长,推荐系统在缓解信息过载方面发挥了重要作用。由于推荐系统具有重要的应用价值,这一领域的研究一直在不断涌现。近年来,图神经网络(GNN)技术得到了广泛的关注,它能将节点信息和拓扑结构自然地结合起来。由于GNN在图形数据学习方面的优越性能,GNN方法在许多领域得到了广泛的应用。在推荐系统中,主要的挑战是从用户/项目的交互和可用的边信息中学习有效的嵌入用户/项目。由于大多数信息本质上具有图结构,而网络神经网络在表示学习方面具有优势,因此将图神经网络应用于推荐系统的研究十分活跃。

论文合集链接:https://www.aminer.cn/topic/6076435e92c7f9be217f7438?f=cs

1.Memory Augmented Graph Neural Networks For Sequential Recommendation

“我们提出了一种记忆增强图神经网络(MA-GNN)来捕获长期和短期用户的兴趣…”

PDF下载链接:https://www.aminer.cn/pub/5e5e190793d709897ce47f2b/?f=cs

2.Inductive Matrix Completion Based on Graph Neural Networks

“我们提出了一种不使用侧面信息的归纳矩阵完成模型…我们的工作表明:1)可以在不使用侧面信息的情况下训练电感矩阵完成模型,同时实现与最先进的转导方法相似或更好的性能;2)围绕(用户,项目)对的局部图形模式是该用户给予该项目的评级的有效预测因子;3) 对于推荐器系统建模,可能不需要远程依赖关系…”

PDF下载链接:https://www.aminer.cn/pub/5e5e18ad93d709897ce2654c/?f=cs

3.Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach

“本文从两个方面重新审视了基于GCN的CF模型。首先,我们从经验上证明,去除非线性将提高推荐性能,这与简单图卷积网络中的理论一致…”

PDF下载链接:https://www.aminer.cn/pub/5e5e193493d709897ce5bb7b/?f=cs

4.Graph Neural Networks for Social Recommendation

“在本文中,我们提出了一种用于社交推荐的新型图神经网络框架(GraphRec)。特别是,我们提供了一种原则性的方法,以共同捕获用户项目图中的交互和意见,并提出了框架GraphRec,该框架连贯地模拟了两个图和异构优势…”

PDF下载链接:https://www.aminer.cn/pub/5cd7fa07ced107d4c65bf2af/?f=cs

5.Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems

“我们提出了双图注意力网络,以协作学习双重社会效应的表示,其中一个由用户特定的注意力权重建模,另一个由动态和上下文感知注意力权重建模。我们还将用户域中的社交效应扩展到项目域,以便利用相关项目的信息进一步缓解数据稀疏问题…”

PDF下载链接:https://www.aminer.cn/pub/5cd7fa07ced107d4c65bf30f/?f=cs

AMiner官网:https://www.aminer.cn/?f=cs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值