GNN论文周报|来自中科院计算所、北邮、牛津、清华等机构前沿论文研究

图神经网络(GNN)是一类专门针对图结构数据的神经网络模型,在社交网络分析、知识图谱等领域中取得了不错的效果。近来,相关研究人员在GNN的可解释性、架构搜索、对比学习等方面做了很多探究。

本周精选了10篇GNN领域的优秀论文,来自中科院计算所、北邮、牛津大学、清华大学等机构。

1. Rethinking GNN-based Entity Alignment on Heterogeneous Knowledge Graphs: New Datasets and A New Method

作者:Xuhui Jiang,Chengjin Xu,Yinghan Shen,Fenglong Su,Yuanzhuo Wang,Fei Sun,Zixuan Li,Huawei Shen
AI华同学综述(大模型驱动):在本文中,我们研究了具有高度异构的特征对齐方法的性能。首先,我们扩展了不合理的条件,并提出了两个新的HHKG(高度异构)数据集,这些数据集模仿真实世界EA(实体对齐)场景。然后,基于提出的数据集,我们进行了广泛的研究来评估以前的代表性EA方法,并揭示了一些关于现有基于GNN的方法进步的令人惊讶的结论。结果表明,结构信息会变得难以利用,但仍很有价值。最后,我们介绍了一种简单但有效的方法:Simple-HHEA。
链接:https://www.aminer.cn/pub/64337e3190e50fcafd76ef98

2. Counterfactual Learning on Graphs: A Survey

作者:Zhimeng Guo,Teng Xiao,Charu Aggarwal,Hui Liu,Suhang Wang
AI华同学综述(大模型驱动):图形结构化数据在现实生活中很受欢迎,如社交网络、蛋白质图和交易网络。然而,这些GNN的缺点包括无法解释训练数据、容易继承训练数据的偏差以及无法对因果关系建模。最近,图上的反事实学习在减轻这些缺点方面显示出有希望的结果。为了促进这种有前景的方向的发展,我们将现有的方法分成四个类别,根据研究问题进行了分类。对于每个类别,我们提供了背景和激励示例, 我们编译了一个开源实现、公共数据集和常用评估指标的集合。
链接:https://www.aminer.cn/pub/642ce6f390e50fcafde74c9c

3. Abnormal Event Detection via Hypergraph Contrastive Learning

作者:Bo Yan,Cheng Yang,Chuan Shi,Jiawei Liu,Xiaochen WangAI华同学综述(大模型驱动):基于超图的异常事件检测本文首先研究了无监督的异常事件检测问题。这些事件被视为属性异构信息网络(AHIN)的星型模式实例,并通过hypergraph模型进一步模拟。提出了一种新的超图对比学习方法,称为AEHCL,用于完全捕捉异常事件模式。该算法设计了内部事件和外部事件的对比模块,以利用自监督的AHIN信息。在测试阶段,提出了基于对比学习的异常事件评分函数来衡量事件异常程度。实验证明了该算法的有效性,结果提高了基线水平高达12%。
链接:https://www.aminer.cn/pub/642ce6f390e50fcafde74b7c

4. SGDP: A Stream-Graph Neural Network Based Data Prefetcher

作者:Yiyuan Yang,Rongshang Li,Qiquan Shi,Xijun Li,Gang Hu,Xing Li,Mingxuan YuanAI华同学综述(大模型驱动):本文提出了一种基于流图神经网络的数据预取器(SGDP)。该方法使用一个加权有向图结构来表示跨流交互。此外,我们通过不同的流构造将SGDP扩展到不同的变体中,进一步扩大其应用场景,并证明了它的鲁棒性。
链接:https://www.aminer.cn/pub/6434cfcc90e50fcafd7a0044

5. GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner

作者:Zhenyu Hou,Yufei He,Yukuo Cen,Xiao Liu,Yuxiao Dong,Evgeny Kharlamov
AI华同学综述(大模型驱动):在图自监督学习中,掩码图形自动编码器(例如 GraphMAE)一种生成方法—最近产生了有希望的结果。 这背后的想法是用自动编码器架构重建节点特征(或结构)—从输入中随机屏蔽掉的特征。 然而,掩蔽特征重建的性能自然依赖于输入特征的可辨别性,并且通常容易受到特征干扰的影响。本文描述了一种基于图的自我监督学习框架 ,其思想是将节点特征(或结构)从输入中重新构造。在本文中,我们设计了多视图随机重新掩码解码和潜在表示预测的策略来规范特征重建。大量的实验表明,该算法可以在各种公共数据集上产生迄今为止最好的基线结果。
链接:https://www.aminer.cn/pub/64363413cf18aa11d8b55a06

6. A Comprehensive Survey on Deep Graph Representation Learning 查看论文

作者:Wei Ju,Zheng Fang,Yiyang Gu,Zequn Liu,Qingqing Long,Ziyue Qiao,Yifang Qin,Jianhao Shen,Fang Sun,Zhiping Xiao,Junwei Yang,Jingyang Yuan,Yusheng Zhao,Xiao Luo,Ming Zhang
AI华同学综述(大模型驱动):图表示学习旨在有效地将高维图结构化数据编码成低维紧凑的向量。这是一系列广泛研究的领域之一,包括机器学习和数据挖掘。传统方法遵循了基本假设, 图中互连节点的嵌入向量仍然可以保持相对较近的距离,以保护图中的结构信息。然而,这是次优的,因为(i)传统的方法模型容量有限,从而限制了学习能力;(ii)现有技术通常依赖于无监督学习策略,无法与最新的学习范式相匹配;(iii)表示学习和下游任务相互关联,需要共同增强。
链接:https://www.aminer.cn/pub/643621a290e50fcafd666076

7. Neural Multi-network Diffusion towards Social Recommendation

作者:Boxin Du,Lihui Liu,Jiejun Xu,Fei Wang,Hanghang TongAI华同学综述(大模型驱动):图神经网络(GNN)已被广泛应用于各种现实应用,如社交推荐。然而,现有的基于图的社交建议模型面临着严重的泛化和过度平滑的问题。在本文中,我们提出了一种简洁的多网络GNN的神经模型(NeMo)。与现有的方法相比,该提出的模型探讨了生成负采样策略,并利用正负用户-实体之间的相互作用来促进用户的兴趣传播。实验表明,该模型优于各种实际基线数据集的先进水平基线。
链接:https://www.aminer.cn/pub/643621a190e50fcafd665f65

8. Hyperbolic Geometric Graph Representation Learning for Hierarchy-imbalance Node Classification

作者:Xingcheng Fu,Yuecen Wei,Qingyun Sun,Haonan Yuan,Jia Wu,Hao Peng,Jianxin Li
AI华同学综述(大模型驱动):学习图中不平衡样本的无偏节点表示已成为一个更加引人注目和重要的话题。在现实场景中,图数据的层次结构揭示了图的重要拓扑属性,并与广泛的应用相关。我们提出了一种名为 HyperIMBA 的新型双曲线几何层次结构不平衡学习框架,以缓解由标记节点的层次结构级别不均匀和跨层次结构连接模式引起的层次结构不平衡问题。实验结果证明了HyperIMBA对层次不平衡节点分类任务的有效性。
链接:https://www.aminer.cn/pub/643621a290e50fcafd666079

9. Adversarially Robust Neural Architecture Search for Graph Neural Networks

作者:Beini Xie,Heng Chang,Ziwei Zhang,Xin Wang,Daixin Wang,Zhiqiang Zhang,Rex Ying,Wenwu ZhuAI华同学综述(大模型驱动):图神经网络在关系数据中取得了巨大的成功。尽管如此,它们仍然容易受到对抗性攻击。现有的防御方法 既不能保证新的数据/任务或敌方攻击的能力,也不能从架构角度提供对于GNN鲁棒性的理解。我们提出了一种新的鲁棒神经架构搜索(NAS)框架G-RNA,该框架允许使用图结构掩码操作来创为消息传递机制设计一个强大的搜索空间。此外,我们定义了一个鲁棒性度量来指导搜索过程,以帮助过滤鲁棒结构。这样,G-RNA有助于从架构角度理解GNN的鲁棒性,并有效地搜索最佳的对抗鲁棒结构。实验结果表明,G-RNA显著优于手动设计鲁棒结构和vanilla graph NAS 基线。
链接:https://www.aminer.cn/pub/6434cfd590e50fcafd7a42c6

10. Graph Neural Network-Aided Exploratory Learning for Community Detection with Unknown Topology

作者:Yu Hou,Cong Tran,Ming Li,Won-Yong ShinAI华同学综述(大模型驱动):在社交网络中发现社区结构是许多研究任务的一个基本问题。然而,由于隐私或访问限制, 网络结构通常是未知的,因此在没有昂贵的网络拓扑获取的情况下,现有的社区检测方法变得无法有效地实现。为了解决这个问题,我们提出了META-CODE, 通过易于收集的节点元数据辅助的探索性学习来检测具有未知拓扑的网络中的重叠社区。具体来说, META-CODE由三次迭代步骤组成: 1) 基于由我们新的重建损失训练的图神经网络 (GNN) 的节点级社区附属嵌入,2) 基于节点查询,通过社区附属进行网络探索;3) 使用在探索网络上的基于边缘连通性的Siamese模型进行网络推理。通过对五个实际数据集进行全面评估,我们证明了该系统优于竞争对手的社区检测方法,并表明每个模块都具有良好的计算效率。
链接:https://www.aminer.cn/pub/6434cfd690e50fcafd7a470f

想要获得更多内容,欢迎使用“AMiner订阅小程序”。小程序最新上线了"arXiv Category",在小程序上就能刷到每日arXiv新论文啦!

使用也很简单,只需三步即可完成订阅推荐!

一:打开小程序,在 “订阅管理” 中选择 “arXiv”
二:选择你关注的关键词;
三:返回 “订阅”页面,选择 “arXiv”, 即可刷到你关注的关键词的相关论文。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值