在参考《吉米多维奇4》的基础之上,最近终于解决了一直困扰自己的一个问题——下面级数的值如何计算,现在将方法分享给大家,若有纰漏之处,望大家批评指正。
首先,该级数是条件收敛的。证明的话,分两步:
一、该级数是收敛的,证明如下:(用Dirichlet判别法)
运用三角函数的积化和差公式,得
经过化简(上式等式右边相邻两项抵消),得(0<x<pi)
也就是说,无论N取多大,都有
故sinnx的部分和有界,又因为1\n单调递减趋于零,由Dirichlet判别法知,该级数收敛。
二、该级数不绝对收敛。证明如下:
注意,上式等式最右侧的级数同上面一的证法也可证明收敛,而右边第一项的级数是发散的,故该级数加绝对值后等于正无穷,即是发散的。
下面开始计算该级数的值:(运用复数)
令,那么有(下面第三个等号运用公式lnz=ln(|z|e^iargz)=ln|z|+iargz)
而
故有
又由棣莫弗公式得
实部对实部,虚部对虚部,故有
至此,问题得以解决。如计算下面级数的值:可令x=1,则有
最后,希望大家能够对这类问题有所启发,掌握解决这类问题的一种思路。