∑sin(nx)/n的值的计算。

 在参考《吉米多维奇4》的基础之上,最近终于解决了一直困扰自己的一个问题——下面级数的值如何计算,现在将方法分享给大家,若有纰漏之处,望大家批评指正。

\sum_{n=1}^{\infty}\frac{\sin nx}{n}

首先,该级数是条件收敛的。证明的话,分两步:

一、该级数是收敛的,证明如下:(用Dirichlet判别法)

\sum _{n=1}^{N}\sin nx=\sin x+\sin 2x+\sin 3x+\cdots +\sin N

运用三角函数的积化和差公式,得

-2\sin \frac{x}{2}(\sin x+\sin 2x+\sin 3x+\cdots +\sin N)=[\cos \left ( x+\frac{x}{2} \right )-\cos \left ( x-\frac{x}{2} \right )]+[\cos \left ( 2x+\frac{x}{2} \right )-\cos \left ( 2x-\frac{x}{2} \right )]+\cdots +[\cos \left ( Nx+\frac{x}{2} \right )-\cos \left ( Nx-\frac{x}{2} \right )]

 经过化简(上式等式右边相邻两项抵消),得(0<x<pi)

\sum _{n=1}^{N}\sin nx=\frac{\cos (Nx+\frac{x}{2})-\cos (x-\frac{x}{2})}{2\sin \frac{x}{2}} 

也就是说,无论N取多大,都有

\left | \sum _{n=1}^{N} \sin nx \right | \leq \left | \frac{\cos (Nx+\frac{x}{2})-\cos (x-\frac{x}{2})}{2\sin \frac{x}{2}} \right | \leq \left | \frac{2}{2\sin \frac{x}{2}} \right | \leq \frac{1}{\left | \sin \frac{x}{2} \right |} \leq \infty

故sinnx的部分和有界,又因为1\n单调递减趋于零,由Dirichlet判别法知,该级数收敛。

二、该级数不绝对收敛。证明如下:

\sum_{n=1}^{\infty}\left | \frac{\sin nx}{n} \right | \geq \sum_{n=1}^{\infty}\frac{\sin ^2nx}{n}=\sum_{n=1}^{\infty}(\frac{1-\cos 2nx}{2n})=\sum_{n=1}^{\infty}\frac{1}{2n}-\sum_{n=1}^{\infty}\frac{\cos 2nx}{2n}

注意,上式等式最右侧的级数同上面一的证法也可证明收敛,而右边第一项的级数是发散的,故该级数加绝对值后等于正无穷,即是发散的。

下面开始计算该级数的值:(运用复数)

z=\cos x+i\sin x,那么有(下面第三个等号运用公式lnz=ln(|z|e^iargz)=ln|z|+iargz)

\sum_{n=1}^{\infty}\frac{z^n}{n}=\ln \frac{1}{1-z}=\ln \frac{1}{1-\cos x-i\sin x}=-\frac{1}{2}\ln (2-2\cos x)+i\arctan (\frac{\sin x}{1-\cos x})

\frac{\sin x}{1-\cos x}=\cot \frac{x}{2}=\tan \frac{\pi-x}{2}

故有

\sum_{n=1}^{\infty}\frac{z^n}{n}=- \frac{1}{2} \ln (2-2\cos x)+i\arctan (\frac{\sin x}{1-\cos x})=-\frac{1}{2}\ln (2-2\cos x)+i\frac{\pi-x}{2}

又由棣莫弗公式得

\sum_{n=1}^{\infty}\frac{z^n}{n}=\sum_{n=1}^{\infty}\frac{(e^{ix})^n}{n}=\sum_{n=1}^{\infty}\frac{e^{inx}}{n}=\sum_{n=1}^{\infty}\frac{\cos nx+i\sin nx}{n}=\sum_{n=1}^{\infty}\frac{\cos nx}{n}+i \sum_{n=1}^{\infty}\frac{\sin nx}{n}

实部对实部,虚部对虚部,故有

\sum_{n=1}^{\infty}\frac{\sin nx}{n}=\frac{\pi-x}{2}

\sum_{n=1}^{\infty}\frac{\sin nx}{n}=-\frac{1}{2}\ln (2-2\cos x)=-\ln\left | 2\sin \frac{x}{2} \right |

至此,问题得以解决。如计算下面级数的值:可令x=1,则有

\sum _{n=1}^{\infty }\frac{\sin n}{n}=\frac{\pi-1}{2}\approx 1.0708
最后,希望大家能够对这类问题有所启发,掌握解决这类问题的一种思路。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值