Fourier变换和级数相关

1. 有些数据,为什么时域不能解决的问题在频域可以求解?

1688网友给出的答案:

时域可以直观的观测到信号的形状,但是,不能用有限的参数对信号进行准确的描述;

频域分析可以将复杂信号分解为简单的信号(正弦信号)的叠加,可以更加精确的了解信号的“构造”;

在线性系统中,可以利用线性叠加原理,将单一频率正弦波作为输入,获取输出信号,得到其频率响应关系后,就可利用信号的频域分析结果对推导出任意复杂信号输入时的输出。

 

2.关于傅里叶级数:

周期为2pi的函数f(x),级数分解需要满足完备性和正交性。

完备性:任意f(x),可以由奇函数+偶函数得到。形如,f(x)=[(f(x) - f(-x)) /2] + [(f(x) + f(-x)) /2]。其中奇函数可对应sinnx求和,偶函数可对应cosnx求和。

正交性:\int_{-pi}^{pi}sinnx\cdot sinmx dx=\int_{-pi}^{pi} (\frac{-cos(n+m)x+cos(n-m)x}{2}) dx

n\neq m,<sinnx,sinmx>=0;

n=m, \int_{-pi}^{pi}\frac{1}{2} dx=pi

3.。。。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值