题目描述
Y = ∑ n = 1 ∞ ( − 1 ) n + 1 X 2 n − 1 ( 2 n − 1 ) ! Y=\displaystyle \sum^{\infty}_{n=1} (-1)^{n+1} \frac{X^{2n-1}}{(2n-1)!} Y=n=1∑∞(−1)n+1(2n−1)!X2n−1
输入格式
输入共一行,一个整数X
输出格式
输出共一行,一个浮点数Y,精确到1e-6
输入输出样例
输入 #1 复制
1
输出 #1 复制
0.841471
说明/提示
1≤X≤20
#include<iostream>
#include<iomanip>
#include<math.h>
using namespace std;
int main(){
int x;
cin>>x;
double sum=0,temp = x;
for(int i=1;fabs(temp) >= 1e-6;i+=2){
sum += temp;
temp = temp * (-x * x) / ((i+1) * (i + 2));
}
cout<<fixed<<setprecision(6);
cout<<sum;
return 0;
}