目录
1、粒子群算法
粒子群算法(也称粒子群优化算法(particle swarm optimization, PSO)),模拟鸟群随机搜索食物的行为。粒子群算法中,每个优化问题的潜在解都是搜索空间中的一只鸟,叫做“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定它们“飞行”的方向和距离。
粒子群算法初始化为一群随机的粒子(随机解),然后根据迭代找到最优解。每一次迭代中,粒子通过跟踪两个极值来更新自己:第1个是粒子本身所找到的最优解,这个称为个体极值;第2个是整个种群目前找到的最优解,这个称为全局极值。也可以不用整个种群,而是用其中的一部分作为粒子的邻居,称为局部极值。
2、电力系统无功优化
电力系统无功优化问题是一个多变量、多约束的非线性规划复杂混合型问题。无功优化是指在电网内,有功电源、有功负荷、有功潮流分布及系统结构参数固定的条件下,控制变量为发电机机端电压,无功补偿装置的无功投入容量
及有载调压变压器变比
,以电网中 PQ节点电压U 及发电机无功出力
作为状态变量,在满足各种约束的条件下,利用先进的优化技术,发现系统的最佳补偿容量,以此改善系统的无功功率分布,降低系统的有功功率损耗,提升系统的电压质量,确保电网安稳的运行。 在无功优化问题中,关键点