适合企业内训的AI工具实操培训教程(37页PPT)(文末有下载方式)

详细资料请看本解读文章的最后内容。

资料解读:适合企业内训的 AI 工具实操培训教程

在当今数字化时代,人工智能(AI)技术迅速发展,深度融入到各个领域,AIGC(人工智能生成内容)更是成为内容创作的新趋势,为企业提升效率、创新发展带来了新契机。这份培训教程聚焦多种 AI 工具,尤其是 DeepSeek,为企业员工提供了全面的实操指导。

AIGC 指利用人工智能技术自动生成文本、图像、音频、视频等内容,让 AI 协助甚至代替人类创作,大幅提高内容产出效率。常见应用场景包括写文案、文生图、文生视频和数字人等。市面上也涌现出诸多 AI 工具,如即梦 AI、DeepSeek、百度文心大模型、阿里巴巴通义大模型、华为盘古大模型等。

DeepSeek 功能多样,涵盖代码生成补全、语义理解、计算推理、智能对话、文本生成等。其能力图谱广泛,涉及专业建议、决策支持、任务分解、文体转换等众多领域,能为企业解决各类复杂问题。DeepSeek - R1 作为开源推理模型,在处理复杂任务方面表现出色,还可免费商用。与通用模型相比,它在数学推导、逻辑分析、代码生成等逻辑密度高的任务上优势明显,但在发散性任务上稍显不足;通用模型则在文本生成、创意写作等多样性高的任务中更灵活,不过专项任务需借助提示语提升效果。

在使用 AI 工具时,提示语设计至关重要。其基本结构包含指令、上下文和期望。指令明确任务内容,上下文提供背景辅助理解,期望表达对输出的要求。编写有效提示语有五个黄金法则:明确需求,避免模糊表述;提供背景信息,让 AI 能针对性处理;指定输出格式,便于整理和应用;控制长度,确保信息精炼;及时纠正不满意的回答,优化输出结果。此外,编写提示语时还应明确目标、使用清晰指令、调整语气风格、提供示例、迭代优化等。

DeepSeek 有七个独特指令。角色扮演法让 AI 扮演专业角色执行任务,像扮演美食评论家撰写餐厅评论;知识蒸馏法将复杂内容压缩为要点,便于知识存储;颗粒度调节器法从宏观、中观、微观多视角分析问题;时间轴推演法梳理事件发展并预测未来趋势;极端测试法通过假设极端条件评估系统应变;逆向思维法从目标逆向推导实现步骤;情景模拟法模拟活动场景,提前制定应对策略。

文生图时,编写提示词也有技巧。要注重细节丰富,添加场景细节和描述风格氛围;明确主题,避免模糊;指定艺术风格、媒介、构图、视角、颜色和光照等。其编写公式为主体 + 细节 + 风格 + 场景 + 光照 / 色调 + 附加要求。

除 DeepSeek 外,教程还介绍了其他工具组合,如 DeepSeek 与豆包、即梦、WPS 结合的应用。以 WPS - 灵犀为例,通过小程序可利用 AI 生成 PPT、海报、爆款文案等。

AI 输出质量受多种因素影响,使用者的能力层次不同,应用效果也不同,分为基础使用层、进阶使用层和创新使用层。突破路径包括建立提示词体系、设计协作流程、发展创新方法、打造个人特色。同时,企业员工需提升引导力、整合力、判断力和 AI 思维这四大能力,准确引导 AI、融合人机优势、评估输出内容、理解 AI 能力边界。

综上所述,这份培训教程为企业员工深入了解和运用 AI 工具提供了详细指导,助力企业在 AI 时代提升竞争力。接下来请您阅读下面的详细资料吧。

篇幅所限,本文只能提供部分资料内容,完整资料请看下面链接

https://download.csdn.net/download/AI_data_cloud/88262930

AI人工智能培训资料(培训PPT+示例代码),资料很大将近3GB,供大家下载学习参考。 1-Python基础(教程+代码) 2-Python数据分析基础(教程+代码) 3-数字图像处理 1)图像处理基础 2)边缘检测 3)形态学图像处理 4-深度学习算法与框架 代码 1)神经网络 2)卷积神经网络 3) 循环神经网络 4)深度学习框架以及应用 卷积神经网络案例 5-AI云服务的调用与搭建 1) 人工智能服务部署 2) 基于AI云服务的快速应用开发 3) 开源项目介绍与战 6-数据挖掘与数据分析 代码 数据挖掘数据分析-5-分类2-贝叶斯算法 数据挖掘数据分析-1-导论 数据挖掘数据分析-2-机器学习 数据挖掘数据分析-3-数据预处理 数据挖掘数据分析-4-数据仓库 数据挖掘数据分析-5-分类1-kNN 数据挖掘数据分析-5-分类3-决策树ID3 数据挖掘数据分析-5-分类3-C4.5-CART(选) 数据挖掘数据分析-5-分类4-神经网络 数据挖掘数据分析-5-分类4-bp算法(选) 数据挖掘数据分析-5-分类5-支撑向量机SVM 数据挖掘数据分析-6-回归1-线性回归 数据挖掘数据分析-7-聚类 7-目标检测 代码 8-YOLOv3解析 1-VOC数据集 2-COCO数据集 3-目标检测概述 4-mAP 5-faster rcnn 6-YOLOv1解析 7-YOLOv2解析 8-人脸检测与识别 代码 face_recognition 1-adaboost 2-人脸数据集简介 3-ArcFace 9-seq2seq模型 convert seq2seq seq2seq with attention 数字图像处理串讲1 数字图像处理串讲2 10-bert模型 Attention Is All You Need BERT Pre-training of Deep Bidirectional Transformers for Language Understanding bert Transformer 11-其他 机器学习之支持向量机 人工智能技术基础及运营商应用 人工智能-真题集 人工智能-论文集
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客11

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值