【深度学习】PyTorch搭建基础神经网络(超详细)

引言:

神经网络作为人工智能的重要组成部分,在图像处理、自然语言处理、语音识别、机器翻译等领域具有广泛的应用。本文将详细介绍如何搭建简单的神经网络框架并进行训练。在搭建神经网络前,对数据集的下载和处理的详细可以看我的这篇博客:(神经网络模型(最细的手写字识别案例)_AI_dataloads的博客-CSDN博客

代码展示:

首先定义一个名为NeuralNetwork的类,它继承了PyTorch框架的nn.Module类,用于创建神经网络。 接下来部分是类的构造函数__init__(),用于初始化神经网络的各个层。在这个类中,初始化了以下层:

  • flatten:一个将输入展平的层。
  • hidden1:第一个隐藏层,输入大小为28x28(图像大小),输出大小为128。
  • hidden2:第二个隐藏层,输入大小为128,输出大小为128。
  • hidden3:第三个隐藏层,输入大小为128,输出大小为64。
  • out:输出层,输入大小为64,输出大小为10(类别数)。
# 定义一个名为NeuralNetwork的类,它继承了PyTorch框架的nn.Module类,用于创建神经网络。
class NeuralNetwork(nn.Module):
    def __init__(self):
        # 继承父类nn.Module的方法和属性
        super(NeuralNetwork, self).__init__()
        # 数据进行展平操作
        self.flatten=nn.Flatten()
        # 定义一层线性神经网络
        self.hidden1=nn.Linear(28*28,128)
        self.hidden2=nn.Linear(128,128)
        self.hidden3=nn.Linear(128,64)
        self.out=nn.Linear(64,10)

这部分定义了前向传播方法forward(),通过前向传播计算输入数据x的输出。首先输入的数据先通过flatten层展平,然后依次经过隐藏层和激活函数进行线性变换和非线性处理。最后经过输出层输出预测结果x。(注意这个函数也是定义在NeuralNetwork之中的。)

   def forward(self,x):
        # 对输入数据进行展平操作
        x=self.flatten(x)
        # 将数据传入第一层线性神经网络
        x=self.hidden1(x)
        # 对神经网络的输出应用ReLU激活函数
        x=torch.relu(x)
        x=self.hidden2(x)
        # 对神经网络的输出应用sigmoid激活函数
        x=torch.sigmoid(x)
        x=self.hidden3(x)
        x=torch.relu(x)
        # 将数据传入输出层
        x=self.out(x)
        # 最后经过输出层输出预测结果x
        return x

这行代码创建了一个model的神经网络模型实例,并将其移动到特定的设备(我这里使用的是GPU)上进行计算。如何查看自己的torch设备(device)可以查看这篇博客:神经网络模型(最细的手写字识别案例)_AI_dataloads的博客-CSDN博客

model=NeuralNetwork().to(device)

这行代码创建了一个CrossEntropyLoss(交叉熵损失函数的实例,用作损失函数。想要了解神经网络中的损失函数可以看我的这篇博客:pytorch中损失函数的使用_AI_dataloads的博客-CSDN博客

#交叉熵损失函数
loss_fn=nn.CrossEntropyLoss()

这行代码创建了一个Adam优化器的实例,将模型参数和学习率作为参数传入。想了解优化器的定义可以参考我的这篇博客:pytorch中损失函数的使用_AI_dataloads的博客-CSDN博客

# model.parameters()用于获取模型的所有参数。这些参数包括权重和偏差等
# 它们都是Tensor类型的,是神经网络的重要组成部分
optimizer=torch.optim.Adam(model.parameters(),lr=0.005)

这行代码定义了一个名为train的函数,用于进行训练。函数接受训练数据、模型、损失函数和优化器作为输入参数。

'''定义训练函数'''
def train(dataloader,model,loss_fn,optimizer):
    # 设置模型为训练模式
    model.train()
    # 记录优化次数
    num=1
    # 遍历数据加载器中的每一个数据批次。
    for X,y in dataloader:
        X,y=X.to(device),y.to(device)
        # 自动初始化权值w
        pred=model.forward(X)
        loss=loss_fn(pred,y) # 计算损失值
        # 将优化器的梯度缓存清零
        optimizer.zero_grad()
        # 执行反向传播计算梯度
        loss.backward()
        # 并通过优化器更新模型参数
        optimizer.step()
        # 将损失值转换为标量
        loss_value=loss.item()
        #将此次损失值打印出来
        print(f'loss:{loss_value},[numbes]:{num}')
        #增加计数器num
        num+=1

这行代码调用train函数来开始模型的训练。它传入训练数据、模型、损失函数和优化器,并执行训练过程。(注意训练前要先获取dataloader,详细可以参考我的博客:PyTorch DataLoader详解:如何高效加载和处理大规模数据集?_AI_dataloads的博客-CSDN博客

#调用函数train(),传入训练数据,神经网络模型,损失函数和优化算法
train(train_dataloader,model,loss_fn,optimizer)

下面是运行后的结果:可以看出一共进行了938次,并展示了每一次的损失值

下面是完整代码展示:

'''定义神经网络'''
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten=nn.Flatten()
        self.hidden1=nn.Linear(28*28,128)
        self.hidden2=nn.Linear(128,128)
        self.hidden3=nn.Linear(128,64)
        self.out=nn.Linear(64,10)
    def forward(self,x):
        x=self.flatten(x)
        x=self.hidden1(x)
        x=torch.relu(x)
        x=self.hidden2(x)
        x=torch.sigmoid(x)
        x=self.hidden3(x)
        x=torch.relu(x)
        x=self.out(x)
        return x

model=NeuralNetwork().to(device)
print(model)

'''建立损失函数和优化算法'''
#交叉熵损失函数
loss_fn=nn.CrossEntropyLoss()
# 优化算法为随机梯度算法/Adam优化算法
optimizer=torch.optim.Adam(model.parameters(),lr=0.005)

'''定义训练函数'''
def train(dataloader,model,loss_fn,optimizer):
    model.train()
    # 记录优化次数
    num=1
    for X,y in dataloader:
        X,y=X.to(device),y.to(device)
        # 自动初始化权值w
        pred=model.forward(X)
        loss=loss_fn(pred,y) # 计算损失值
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        loss_value=loss.item()
        print(f'loss:{loss_value},[numbes]:{num}')
        num+=1

train(train_dataloader,model,loss_fn,optimizer)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值