【深度学习】PyTorch搭建基础神经网络(超详细)

引言:

神经网络作为人工智能的重要组成部分,在图像处理、自然语言处理、语音识别、机器翻译等领域具有广泛的应用。本文将详细介绍如何搭建简单的神经网络框架并进行训练。在搭建神经网络前,对数据集的下载和处理的详细可以看我的这篇博客:(神经网络模型(最细的手写字识别案例)_AI_dataloads的博客-CSDN博客

代码展示:

首先定义一个名为NeuralNetwork的类,它继承了PyTorch框架的nn.Module类,用于创建神经网络。 接下来部分是类的构造函数__init__(),用于初始化神经网络的各个层。在这个类中,初始化了以下层:

  • flatten:一个将输入展平的层。
  • hidden1:第一个隐藏层,输入大小为28x28(图像大小),输出大小为128。
  • hidden2:第二个隐藏层,输入大小为128,输出大小为128。
  • hidden3:第三个隐藏层,输入大小为128,输出大小为64。
  • out:输出层,输入大小为64,输出大小为10(类别数)。
# 定义一个名为NeuralNetwork的类,它继承了PyTorch框架的nn.Module类,用于创建神经网络。
class NeuralNetwork(nn.Module):
    def __init__(self):
        # 继承父类nn.Module的方法和属性
        super(NeuralNetwork, self).__init__()
        # 数据进行展平操作
        self.flatten=nn.Flatten()
        # 定义一层线性神经网络
        self.hidden1=nn.Linear(28*28,128)
        self.hidden2=nn.Linear(128,128)
        self.hidden3=nn.Linear(128,64)
        self.out=nn.Linear(64,10)

这部分定义了前向传播方法forward(),通过前向传播计算输入数据x的输出。首先输入的数据先通过flatten层展平,然后依次经过隐藏层和激活函数进行线性变换和非线性处理。最后经过输出层输出预测结果x。(注意这个函数也是定义在NeuralNetwork之中的。)

   def forward(self,x):
        # 对输入数据进行展平操作
        x=self.flatten(x)
        # 将数据传入第一层线性神经网络
        x=self.hidden1(x)
        # 对神经网络的输出应用ReLU激活函数
        x=torch.relu(x)
        x=self.hidden2(x)
        # 对神经网络的输出应用sigmoid激活函数
        x=torch.sigmoid(x)
        x=self.hidden3(x)
        x=torch.relu(x)
        # 将数据传入输出层
        x=self.out(x)
        # 最后经过输出层输出预测结果x
        return x

这行代码创建了一个model的神经网络模型实例,并将其移动到特定的设备(我这里使用的是GPU)上进行计算。如何查看自己的torch设备(device)可以查看这篇博客:神经网络模型(最细的手写字识别案例)_AI_dataloads的博客-CSDN博客

model=NeuralNetwork().to(device)

这行代码创建了一个CrossEntropyLoss(交叉熵损失函数的实例,用作损失函数。想要了解神经网络中的损失函数可以看我的这篇博客:pytorch中损失函数的使用_AI_dataloads的博客-CSDN博客

#交叉熵损失函数
loss_fn=nn.CrossEntropyLoss()

这行代码创建了一个Adam优化器的实例,将模型参数和学习率作为参数传入。想了解优化器的定义可以参考我的这篇博客:pytorch中损失函数的使用_AI_dataloads的博客-CSDN博客

# model.parameters()用于获取模型的所有参数。这些参数包括权重和偏差等
# 它们都是Tensor类型的,是神经网络的重要组成部分
optimizer=torch.optim.Adam(model.parameters(),lr=0.005)

这行代码定义了一个名为train的函数,用于进行训练。函数接受训练数据、模型、损失函数和优化器作为输入参数。

'''定义训练函数'''
def train(dataloader,model,loss_fn,optimizer):
    # 设置模型为训练模式
    model.train()
    # 记录优化次数
    num=1
    # 遍历数据加载器中的每一个数据批次。
    for X,y in dataloader:
        X,y=X.to(device),y.to(device)
        # 自动初始化权值w
        pred=model.forward(X)
        loss=loss_fn(pred,y) # 计算损失值
        # 将优化器的梯度缓存清零
        optimizer.zero_grad()
        # 执行反向传播计算梯度
        loss.backward()
        # 并通过优化器更新模型参数
        optimizer.step()
        # 将损失值转换为标量
        loss_value=loss.item()
        #将此次损失值打印出来
        print(f'loss:{loss_value},[numbes]:{num}')
        #增加计数器num
        num+=1

这行代码调用train函数来开始模型的训练。它传入训练数据、模型、损失函数和优化器,并执行训练过程。(注意训练前要先获取dataloader,详细可以参考我的博客:PyTorch DataLoader详解:如何高效加载和处理大规模数据集?_AI_dataloads的博客-CSDN博客

#调用函数train(),传入训练数据,神经网络模型,损失函数和优化算法
train(train_dataloader,model,loss_fn,optimizer)

下面是运行后的结果:可以看出一共进行了938次,并展示了每一次的损失值

下面是完整代码展示:

'''定义神经网络'''
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten=nn.Flatten()
        self.hidden1=nn.Linear(28*28,128)
        self.hidden2=nn.Linear(128,128)
        self.hidden3=nn.Linear(128,64)
        self.out=nn.Linear(64,10)
    def forward(self,x):
        x=self.flatten(x)
        x=self.hidden1(x)
        x=torch.relu(x)
        x=self.hidden2(x)
        x=torch.sigmoid(x)
        x=self.hidden3(x)
        x=torch.relu(x)
        x=self.out(x)
        return x

model=NeuralNetwork().to(device)
print(model)

'''建立损失函数和优化算法'''
#交叉熵损失函数
loss_fn=nn.CrossEntropyLoss()
# 优化算法为随机梯度算法/Adam优化算法
optimizer=torch.optim.Adam(model.parameters(),lr=0.005)

'''定义训练函数'''
def train(dataloader,model,loss_fn,optimizer):
    model.train()
    # 记录优化次数
    num=1
    for X,y in dataloader:
        X,y=X.to(device),y.to(device)
        # 自动初始化权值w
        pred=model.forward(X)
        loss=loss_fn(pred,y) # 计算损失值
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        loss_value=loss.item()
        print(f'loss:{loss_value},[numbes]:{num}')
        num+=1

train(train_dataloader,model,loss_fn,optimizer)

  • 10
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 使用PyTorch搭建卷积神经网络可以很容易地实现手写数字识别。首先需要导入PyTorch库,并加载手写数字数据集。然后,可以定义卷积神经网络的结构,包括卷积层、池化层、全连接层等。接着,可以定义损失函数和优化器,并进行模型训练。最后,可以使用测试集对模型进行评估。整个过程需要注意参数的选择和调整,以达到最佳的识别效果。 ### 回答2: Pytorch一个非常流行的深度学习框架,它的设计目的是为了能够快速地搭建神经网络模型,并进行训练和测试。本文将介绍如何使用Pytorch搭建卷积神经网络来对手写数字进行识别。 首先,我们需要准备手写数字数据集,其中包含许多手写数字图片和其对应的标签。这里我们可以使用MNIST数据集,它是一个非常著名的手写数字识别数据集,包含60000张训练图片和10000张测试图片。Pytorch已经内置了该数据集。 接着,我们需要构建卷积神经网络模型。对于手写数字识别任务,我们可以采用经典的LeNet-5模型,它是一个两层卷积层和三层全连接层的模型。在Pytorch中,我们可以使用nn.Module类来定义模型。 模型定义如下: ``` import torch.nn as nn class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.pool1(x) x = self.conv2(x) x = nn.functional.relu(x) x = self.pool2(x) x = x.view(-1, 16 * 4 * 4) x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) return x ``` 上述代码定义了一个名为LeNet的模型,该模型由两个卷积层、两个最大池化层和三个全连接层组成,并且采用ReLU作为激活函数。 接下来,我们需要定义损失函数和优化器。在这里,我们将采用交叉熵作为损失函数,优化器使用随机梯度下降(SGD)。 ``` criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(lenet.parameters(), lr=0.001, momentum=0.9) ``` 最后,我们需要定义一些训练和测试的函数,并开始训练模型。 ``` def train(model, dataloader, criterion, optimizer): model.train() running_loss = 0.0 correct = 0 total = 0 for i, data in enumerate(dataloader): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = \ torch.max(outputs.data, dim=1) total += labels.size(0) correct += \ (predicted == labels).sum().item() epoch_loss = running_loss / len(dataloader.dataset) epoch_acc = correct / total return epoch_loss, epoch_acc def test(model, dataloader, criterion): model.eval() running_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for data in dataloader: inputs, labels = data outputs = model(inputs) loss = criterion(outputs, labels) running_loss += loss.item() _, predicted = \ torch.max(outputs.data, dim=1) total += labels.size(0) correct += \ (predicted == labels).sum().item() epoch_loss = running_loss / len(dataloader.dataset) epoch_acc = correct / total return epoch_loss, epoch_acc for epoch in range(num_epochs): train_loss, train_acc = \ train(lenet, train_dataloader, criterion, optimizer) valid_loss, valid_acc = \ test(lenet, valid_dataloader, criterion) print(f"Epoch {epoch + 1}: ") print(f"Train Loss={train_loss:.4f}, Train Acc={train_acc:.4f}") print(f"Valid Loss={valid_loss:.4f}, Valid Acc={valid_acc:.4f}") ``` 此时,我们的模型已经成功训练好了,可以使用测试集进行测试了。测试代码如下: ``` test_loss, test_acc = \ test(lenet, test_dataloader, criterion) print(f"Test Loss={test_loss:.4f}, Test Acc={test_acc:.4f}") ``` 在完成测试后,可以使用以下语句保存该模型: ``` torch.save(lenet.state_dict(), "lenet.pth") ``` 上述代码将保存模型的权重参数到文件lenet.pth中。 最后,我们可以使用以下代码加载该模型并对样本进行识别: ``` lenet.load_state_dict(torch.load("lenet.pth")) lenet.eval() sample, _ = test_dataset[0] outputs = lenet(torch.unsqueeze(sample, dim=0)) _, predicted = \ torch.max(outputs.data, dim=1) print(f"Predicted Label: {predicted.item()}") ``` 这段代码将加载保存的模型权重,并使用该模型识别测试集中第一张图片的标签。 ### 回答3: 使用pytorch搭建卷积神经网络(Convolutional Neural Network, CNN)识别手写数字,下面是详细步骤: 1. 数据集准备 使用MNIST手写数字数据集,该数据集由60,000个训练图像和10,000个测试图像组成。在pytorch中可以使用torchvision.datasets.MNIST()加载该数据集。 2. 构建CNN模型 使用pytorch的nn.Module来定义CNN模型,其中包括卷积层、ReLU激活函数、池化层以及全连接层等。 3. 定义损失函数和优化器 定义交叉熵损失函数(CrossEntropyLoss)和随机梯度下降优化器(SGD,Stochastic Gradient Descent)。 4. 训练模型 使用dataloader来加载数据集,对模型进行训练,可以使用epoch的方式进行多次训练。 5. 评估模型 在测试集上进行预测,并计算准确率等指标,评估模型的性能。 下面是一份pytorch代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 加载MNIST数据集 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) batch_size = 32 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True) # 构建CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, stride=1, padding=2) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(7 * 7 * 64, 1024) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(1024, 10) def forward(self, x): x = self.conv1(x) x = self.relu1(x) x = self.pool1(x) x = self.conv2(x) x = self.relu2(x) x = self.pool2(x) x = x.view(x.size(0), -1) x = self.fc1(x) x = self.relu3(x) x = self.fc2(x) return x model = CNN() print(model) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 评估模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total)) ``` 通过训练和评估,我们可以得到一个准确率较高的手写数字识别CNN模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值