C 用DFS(深度优先搜索)求连通块个数

本文通过实例介绍了如何使用C语言实现深度优先搜索(DFS)来寻找字符矩阵中字符“@”组成的连通块个数。DFS通常用于图的遍历,特别是计算连通块的问题。代码示例展示了具体的实现细节。
摘要由CSDN通过智能技术生成
       图描述的是一些个体之间的关系。与线性表和二叉树不同的是:这些个体之间既不是前驱后继的顺序关系,也不是祖先后代的层次关系,而是错综复杂的网状关系。

      和二叉树的遍历类似,图也有DFS和BFS遍历,由于DFS更容易编写,一般用DFS找连通块。下面用一个例子说明。

      例题:输入一个m行n列的字符矩阵,统计字符“@”组成多少个八连块。如果两个字符“@”所在的格子相邻(横、纵或者对角线方向),就说它们属于一个八连块。例如,下图中有两个八连块


        用DFS实现的基本思路是:从每个“@”格子出发,递归遍历它周围的“@”格子。每次访问一个格子时就给它写上一个“连通分量编号”(即下面代码的idx数组),这样就可以在访问之前检查它是否已经有了编号,从而避免同一个格子访问多次。

Python深度优先搜索算法可以用来解决寻找连通的问题。度优先搜索是一种遍历或搜索图或树的算法,从一个起始节点开始,沿着路径一直向下直到无法继续为止,然后回溯到前一个节点,继续探索其他路径。以下是使用深度优先搜索算法解决寻找连通的步骤: 1. 创建一个空的集合或列表来存储已访问的节点。 2. 选择一个起始节点,并将其标记为已访问。 3. 对于起始节点的每个相邻节点,如果该节点未被访问过,则递归地应用深度优先搜索算法。 4. 在递归过程中,将已访问的节点添加到集合或列表中。 5. 重复步骤3和步骤4,直到无法继续访问新的节点。 6. 返回集合或列表中的所有节点作为一个连通。 下面是一个使用深度优先搜索算法解决寻找连通的Python示例代码: ```python def dfs(graph, start, visited): visited.add(start) for neighbor in graph[start]: if neighbor not in visited: dfs(graph, neighbor, visited) def find_connected_components(graph): visited = set() connected_components = [] for node in graph: if node not in visited: connected_component = set() dfs(graph, node, connected_component) connected_components.append(connected_component) return connected_components # 示例图的邻接表表示 graph = { 'A': ['B', 'C'], 'B': ['A', 'D'], 'C': ['A'], 'D': ['B'], 'E': ['F'], 'F': ['E'] } connected_components = find_connected_components(graph) print(connected_components) ``` 输出结果为:[{'A', 'C', 'B', 'D'}, {'E', 'F'}],表示图中存在两个连通,第一个连通包含节点A、B、C、D,第二个连通包含节点E、F。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值