李宏毅老师课程:Unsupervised Learning: PCA

PCA

如果reduce to 1D,我们使用 z 1 = w 1 ∗ x z_1=w^1*x z1=w1x,使得 x x x投影到 w 1 w^1 w1上,即达到了降维的目的,那么我们如何来评价降维的好坏呢?

我们可以使用降维之后数据的variance来评价,variance越大越好
在这里插入图片描述
如果reduce to 2D,那么现在就需要投影到两个不同的方向 ( w 1 , w 2 ) (w^1,w^2) (w1,w2)上,再来与 x x x做inner product,得到 z 1 , z 2 z_1,z_2 z1,z2,再分别计算这两者的variance;其中 w 1 , w 2 w^1,w^2 w1,w2要满足一定的条件,即 w 1 ∗ w 2 = 0 w^1*w^2=0 w1w2=0,两者是垂直的,可以保证是不同的方向

那么W就是一个正交矩阵,向量之间相互正交,且向量模长都是1
在这里插入图片描述

Formula

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Decorrelation

在这里插入图片描述

Another Point of View

下图中的7可以由三个部分组成,即 u 1 , u 3 , u 5 u^1,u^3,u^5 u1,u3,u5
在这里插入图片描述
那么我们目标就是找到这K个component
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
c k c_k ck可以用另外一种形式表达出来
在这里插入图片描述
那么 c 1 c_1 c1乘上 w i w^i wi,就可以得到output
在这里插入图片描述
对于 c 2 c_2 c2也有类似的结果
在这里插入图片描述
如果是在linear的情况下,使用PCA比较好,用network就会很麻烦;但network可以是deep的,可以中间有很多个hidden layer,这被称为Deep Autoencoder

Weakness of PCA

  • unsupervised,输入的data是没有label的,PCA会找一种方式使得降维之后data的variance最大,就可能出现左上的结果,这时两者的class是不一样的,如果还是继续投影到红线上,就会出现两个class的data相互交错的局面;
  • Linear,对于立体的data,如果还是继续pca,得到的结果也会非常不理想
    在这里插入图片描述

PCA for Pokemon

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

PCA for MNIST

在这里插入图片描述

PCA for Face

在这里插入图片描述
本文图片来自李宏毅老师课程PPT,文字是对李宏毅老师上课内容的笔记或者原话复述,在此感谢李宏毅老师的教导。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值