李宏毅机器学习27—Unsupervised learning auto-encoder

Unsupervised learning auto-encoder

摘要:

auto-encoder是针对无监督学习,缺失label的数据无法训练而发明的一种方法,简单来说,就是将数据转换成code,再将code转换成数据,minimize前后数据的差别,进而达到降维的目的

当auto-encoder有多个隐藏层时,就转换成了deep auto-encoder,deep auto-encoder会比一般的PCA效果更好。

之后讲了auto-encoder的多个应用:

1.在文本检索中,通过auto-encoder降维,可以将描述相同内容的文章进行归类。

2.将图像转成code进行相似图像查找,得到的结果要比通过像素相似查找好很多。

3.auto-encoder也可以对DNN的参数进行初始化,方便DNN进行训练。

之后还将了auto-encoder的变形和CNN中的应用:反卷积和反池化的做法。

目录

一、Auto-encoder

1.从PCA开始

2.Deep Auto-encoder

二、Auto-encoder的应用:

1.Auto-encoder text retrieval:

2 Auto-encoder-Similar Image Search

3.Pre-training DNN

4.De-noising auto-encoder

5.auto-encoder在CNN中的应用

总结:


一、Auto-encoder

对于encoder来说,我们有输入object,由于是无监督学习,输出的code是未知的。

首先训练一个decoder,输入是上面的code,输出是原来的object,对于这两个东西如果单独拿出来是没有办法训练,但是将这两个接在一起,就可以训练了。连在一起后,整个网络的输入和输出都有了。

对于encoder来说,输出的code通常维度要小于输入object的维度,用一部分代表整个object。

对于decoder而言,他的主要作用是重建原来的object

注意看这张图,encoder输入图像,输出code,decoder输入code,输出图像。

1.从PCA开始

输入一张image x,把x*weigh得到component的weight,然后component的weight 再乘个矩阵WT得到x ^

在PCA中做的事,就是让x和xh越接近越好

当做神经网络来看的话,x就是输入层,xh就是输出层,component的weight就是中间层。

而且前面这个部分就是encoder,后面就是decoder

中间层的输出,就是上面提到的code。也就是图片中橙色的c

2.Deep Auto-encoder

Deep Auto-encoder可以看做是有多个中间层的PCA

每一层的weight不一定是要对称的,一般通过反向传播算法进行计算。

结果:

可以看到Deep Auto-encoder的结果比PCA要好一些。

PCA是降到30维,然后再reconstruct到784,这样的结果有些模糊。

Deep Auto-encoder先升到1000维,在经过多个中间层处理,得到的结果明显更好。

如果不是降到30维,而是2维的话

用PCA降到2维,不同数字聚在一起。(不同颜色代表不同数字)

用Deep Auto-encoder降到2维,不同数字是相对分散的。

二、Auto-encoder的应用:

1.Auto-encoder text retrieval:

文本检索,本质上就是找到与文本最相近的向量

Vector Space Model:将每篇文章表达成空间中的一个vector

假设使用者查询一个词汇,将这个词汇也设置成为空间中的一个点,计算查询词汇和空间中的文章的内积/余弦相似度。

这个方法的好坏,很大程度上取决于将文章表达成vector效果的好坏。

一般的方法是bag-of-word

每个词用one-hot向量表示,有的时候还会乘上一些权重以表示词的重要程度

这个模型的弱点也明显,就是没有考虑词与词之间的语义信息(无法知道苹果和橙子都是水果,因为词之间是独立的)。

如果用上Auto-encoder,那么语义信息就很自然的被包含进来了。不同文章谈论相近的事时,它们的vector是相近的。

Auto-encoder的输入是bag-of-word,不同文章讨论类似的事情时,它们的code是相近的。

将输入通过Auto-encoder转成二维的code,讨论相同类型的事务,它们文章的code是详图颜色的。

 

2 Auto-encoder-Similar Image Search

将图像在Auto-encoder上面转换成code,用code进行对比,由于是无监督学习,所以不需要担心数据量。

下面是在像素上算相似度,和code上算相似度,结果的对比,可以发现在code上算相似度,得到的结果都是人像,这个效果还是要更好一些的。

3.Pre-training DNN

Auto-encoder可以对模型进行初始化,这个方法叫做Pre-training DNN,

具体做法:

左侧是目标模型,Pre-training DNN的做法是每次对一个隐藏层进行auto-encoder

以第一层为例,由输入784维,通过w1得到1000维code,再由code降维到784维,对得到的参数w1进行保留。再继续计算下面的隐藏层,依次保留得到的weight。

这样得到的weight就是初始化之后的值。经过初试化之后,就可以通过反向传播进行fine-tune。

Pre-training这个方法在之前训练比较深的网络时有用,现在不用这个方法也可以进行训练了。但是当我们有大量的unlabel data,少量的label data,这个时候可以用unlabel data Pre-training模型,然后再用label data进行fine-tune

4.De-noising auto-encoder

Auto-encoder的另外一个改进方法就是De-noising:

目标是x和y越接近越好,X加噪声得到x’,encode之后变成c,decode之后变成y,这个模型的鲁棒性比较好,因为在学习样本的code的过程中,顺便把噪声的样子也学习到了,杂序去掉,因此噪声对这个模型的影响也就小了。

另外一个类似的改进模型是Contractive auto-encoder

5.auto-encoder在CNN中的应用

右边是encoder,容易理解,左边decoder做的是相反的事情,也就是反池化,反卷积。

Unpooling的做法:

主要是记住池化时的位置,将池化的位置记成白色,Unpooling时将池化位置用最大值填充,其他位置补0。

Deconvolution:反卷积就是卷积

以一维卷积为例,

左侧是卷积,不同颜色代表不同权重。

中间部分是反卷积,反卷积应该是一个值变成三个值。

右侧是补零之后在卷积,可以发现右侧和中间其实是一样的。区别在于weight的次序是相反的。

所以反卷积实际上可以看做是padding后的卷积操作,这样就不需要额外编制代码,而是直接调用卷积的函数即可。

总结:

Auto-Encoder 是 Feedforward Neural Network 的一种,曾经主要用于数据的降维或者特征的抽取,而现在也被扩展用于生成模型中。与其他 Feedforward NN 不同的是,其他 Feedforward NN 关注的是 Output Layer 和错误率,而 Auto-Encoder 关注的是 Hidden Layer。

PCA就是一种简单的线性降维方法,而Auto-Encoder可以对非线性关系进行降维。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值