如何选择适合深度学习的GPU?
当我们在学习机器学习或者是深度学习的时候,训练深度神经网络模型的时候,经常使用GPU而不是CPU,这是因为在处理深度神经网络方面,GPU的处理能力优于CPU。
但是,很多人并不十分清楚我们到底需要什么样的GPU?因此,本文给大家做一些简单的分析,并提出一些建议。
为什么GPU比CPU更适合机器学习或者深度学习?
CPU
(中央处理器)是计算机的核心,它非常灵活,不仅需要处理来自各种程序和硬件的指令,并且处理速度也非常优秀。为了在这种多任务环境中表现出色,CPU具有少量且灵活快速的处理单元(也称为核)。
GPU
(图形处理单元)在多任务处理方面不那么灵活。但它可以并行执行大量复杂的数学计算。这是通过拥有更多数量的简单核心(数千个到上万)来实现的,这样可以同时处理许多简单的计算(并行计算)。
并行计算
的要求非常适合于:
- 图形渲染——移动的图形对象需要不断地计算它们的轨迹,这需要大量不断重复的并行数学计算。
- 机器和深度学习——大量的矩阵/张量计算,GPU可以并行处理。