基于AutoEncoder的生成对抗网络:VAE-GAN
" 生成模型(Generative modeling)"已成为机器学习的一个较为广泛的领域。在图像这种流行数据上,每张图像都有数千数万的维度(像素点), 生成模型的工作就是通过某种方式来捕获像素之间的依赖,而具体捕获哪些依赖关系,就取决于我们想用模型来做些什么。
通常来讲,看起来像真实图像的数据点会以更高的概率被采纳,而看起来像随机噪声图像的数据点会以较低的概率被采纳。有时候这样的模型不一定有用,因为知道了一张图像后就不太可能合成不一样的图像。我们实际上更加需要的是和已经存在的图像类似,但又不完全相同的图像,拿来扩充数据,这样的图像原本是不存在的。
GAN和VAE都是效果比较好的生成模型,但是VAE希望通过一种显式的方法找到一个概率密度,并通过最小化对数似函数的下限来得到最优解;GAN则是使用对抗的方式来寻找一种平衡,不需要给定显式的概率密度函数。
AutoEncoder
VAE
(变分自编码器)是基于AE
(自编码器)提出的,所以要先了解AE。Encoder将输入X映射到一个隐状态Zÿ