【AI算法学习】基于AutoEncoder的生成对抗网络

本文介绍了AutoEncoder、VAE、GAN及其变种,包括VAE-GAN和DCGAN,强调了InfoGAN在无监督学习中通过最大化互信息实现变量解耦的能力。此外,还提到了ss-InfoGAN,这是一种利用少量标签信息的半监督学习方法,以生成更高质量的、语义上有意义的图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于AutoEncoder的生成对抗网络:VAE-GAN


" 生成模型(Generative modeling)"已成为机器学习的一个较为广泛的领域。在图像这种流行数据上,每张图像都有数千数万的维度(像素点), 生成模型的工作就是通过某种方式来捕获像素之间的依赖,而具体捕获哪些依赖关系,就取决于我们想用模型来做些什么

通常来讲,看起来像真实图像的数据点会以更高的概率被采纳,而看起来像随机噪声图像的数据点会以较低的概率被采纳。有时候这样的模型不一定有用,因为知道了一张图像后就不太可能合成不一样的图像。我们实际上更加需要的是和已经存在的图像类似,但又不完全相同的图像,拿来扩充数据,这样的图像原本是不存在的。

GAN和VAE都是效果比较好的生成模型,但是VAE希望通过一种显式的方法找到一个概率密度,并通过最小化对数似函数的下限来得到最优解GAN则是使用对抗的方式来寻找一种平衡,不需要给定显式的概率密度函数

AutoEncoder

VAE(变分自编码器)是基于AE(自编码器)提出的,所以要先了解AE。Encoder将输入X映射到一个隐状态Zÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值