【数据挖掘】关联规则之Galois Closure Based Approach(基于Galois闭包的方法)

本文介绍了Galois Closure Based Approach用于关联规则挖掘的方法。闭频繁项集是指那些不能通过扩展得到更高支持度的频繁项集。例如,在特定数据集中,ABCD是一个闭频繁项集。该方法包括提取所有闭频繁集及其支持度,然后生成关联规则。对于稀疏、弱相关数据,基于Galois闭包的方法计算效率较低,而在密集、相关数据中,这种方法能有效减少候选项集数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Galois Closure Based Approach(基于Galois闭包的方法)


Closed Frequent Itemset(闭频繁项集):当项集X是频繁项集,所有X的扩展集Y的支持度和X的支持度不相同,则X是闭频繁项集。例如,minsupport=2/5, support(BC)=2/5, support(ABCD)=2/5, support(ABCDE)=1/5,那么BC不是闭频繁集,ABCD是闭频繁集。

最终闭频繁集如下:

 

那么这个方法的步骤就是:

1.提取所有闭频繁集并生成它们的支持度

2.生成所有关联规则

这些不同方法的关键点就在于提取不同的itemset,需要基于不同的数据特征,选用最优的方法。

  • 稀松、弱相关的数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值