Galois Closure Based Approach(基于Galois闭包的方法)
Closed Frequent Itemset(闭频繁项集):当项集X是频繁项集,所有X的扩展集Y的支持度和X的支持度不相同,则X是闭频繁项集。例如,minsupport=2/5, support(BC)=2/5, support(ABCD)=2/5, support(ABCDE)=1/5,那么BC不是闭频繁集,ABCD是闭频繁集。
最终闭频繁集如下:
那么这个方法的步骤就是:
1.提取所有闭频繁集并生成它们的支持度
2.生成所有关联规则
这些不同方法的关键点就在于提取不同的itemset,需要基于不同的数据特征,选用最优的方法。
- 稀松、弱相关的数据