POJ3974(哈希和倍增)

求最长的回文子串的长度。
可以用哈希O(1)的判断左右两边是否对称。
O(N)的枚举每个点,倍增地向两边扩展,扩展的最大长度就是最长的回文子串的长度。
回文串分奇偶,分类讨论就好了

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 1000000 + 5;
typedef unsigned long long ull;
ull f[N], p[N], g[N];
string s;
int len;
bool ck1(int pos, int t, int k)
{
    if (pos - t - k < 1 || pos + t + k > len) return 0;
    int x1 = pos - t - k, y1 = pos - 1;
    int x2 = pos + 1, y2 = pos + t + k;
    int h1 = f[y1] - f[x1 - 1] * p[y1 - x1 + 1];
    int h2 = g[x2] - g[y2 + 1] * p[y2 - x2 + 1];
    return h1 == h2;
}
bool ck2(int pos, int t, int k)
{
    if (pos - t - k < 0 || pos + t + k > len) return 0;
    int x1 = pos - t - k + 1, y1 = pos;
    int x2 = pos + 1, y2 = pos + t + k;
    int h1 = f[y1] - f[x1 - 1] * p[y1 - x1 + 1];
    int h2 = g[x2] - g[y2 + 1] * p[y2 - x2 + 1];
    return h1 == h2;
}
int main()
{
    int cnt = 0;
    while(cin >> s) {
        if (s == "END") break;
        len = s.length();
        s = " " + s;
        p[0] = 1;
        for (int i = 1; i <= len; i++) {
            f[i] = f[i - 1] * 131 + s[i];
            p[i] = p[i - 1] * 131;
        }
        for (int i = len; i >= 1; i--) g[i] = g[i + 1] * 131 + s[i];
        int ans1 = 0, ans2 = 0;
        for (int i = 1; i <= len; i++) {
            int t = 1, k = 0;
            while(t) {
                if (ck1(i, t, k)) {
                    k += t;
                    t *= 2;
                }
                else t /= 2;
            }
            ans1 = max(ans1, 2 * k + 1);

            int t1 = 1, k1 = 0;
            while(t1) {
                if (ck2(i, t1, k1)) {
                    k1 += t1;
                    t1 *= 2;
                }
                else t1 /= 2;
            }
            ans2 = max(ans2, 2 * k1);
        }
        printf("Case %d: %d\n", ++cnt, max(ans1, ans2));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值