故障诊断分类 matlab代码
轴承内圈、外圈、滚动体故障分类
(1)故障样本的时域、频域、时频域、熵等特征提取;
(2)BP网络或者SVM模型训练与测试
(3)输出测试样本分类准确率
成套代码,注释清晰,直接运行
ID:3230643844934283
西红柿首富7211
故障诊断分类是工业领域中一项关键任务,对于确保设备正常运行和提高生产效率至关重要。本文将围绕轴承内圈、外圈、滚动体的故障分类展开讨论,并提供成套代码,以实现故障分类的自动化诊断。
在故障诊断分类中,首先需要从故障样本中提取时域、频域、时频域、熵等特征。这些特征是描述轴承故障的一些重要指标,可以帮助分析人员判断轴承的工作状态。时域特征反映了轴承振动信号的时间分布情况,频域特征可以展示轴承振动信号的频率分布情况,时频域特征可以同时考虑时间和频率信息,熵则反映了信号的不确定性和随机性。通过提取这些特征,可以全面地了解轴承的振动信号,从而为后续的故障分类和诊断提供有力支持。
接下来,我们可以使用BP网络或者SVM模型对提取的特征进行训练与测试。BP网络是一种基于反向传播算法的人工神经网络模型,SVM模型是一种基于支持向量机的分类器。使用这些模型,可以训练出一个能够自动识