高通与NVIDIA在物联网芯片交锋,争相引入AI

物联网被视为万亿级的市场,而作为芯片行业的两大龙头企业高通和NVIDIA也高度关注这一市场,它们纷纷发布自己的物联网芯片,值得关注的是这两个芯片企业如今开始将AI引入物联网市场,分别推出集成AI功能的物联网芯片,以抢占市场高地。



此前谈到AI主要是以云数据处理为主,而随着AI的发展人们逐渐认识到终端同样需要引入AI,这是因为有部分AI功能只需要在终端运行即可,如拍照引入AI功能可以获得更佳的自拍相片;对于自动驾驶汽车来说,它需要足够强大的本地数据处理能力,确保高可靠性和低延迟。

引入终端则AI还可以大幅提高系统的运行效率,对于自动驾驶来说其要采集的数据极为庞大,如果数据在终端则进行一定的筛选和处理,将有重要价值的信息通过网络传输至云端再将需要的结果返回,这样可以大幅节省网络带宽、数据中心的存储和计算资源。

同时终端则AI的兴起有助于让AI早日普及,如今谈到的AI更多是一种概念以及大数据处理等方面,与人们的日常生活太远,AI 应用于人们的生活还太远,导致AI的普及存在困难,终端则AI的兴起则有望迅速推动AI的普及。

因为这些原因近期终端则AI逐渐受到人们的重视,其中华为去年在麒麟970、苹果在A11处理器上引入AI芯片无疑让人们对终端则AI的兴趣大增,作为芯片企业的两大重量级企业NVIDIA和高通对此无疑高度重视。

在AI行业,NVIDIA无疑是领头羊,全球多数的神经训练网络都基于NVIDIA的芯片构建,这是因为它的GPU在进行数据处理方面拥有强大的优势,而它也早早在该领域布局,因此成为最大的获益者。由于NVIDIA在AI芯片市场所拥有的优势,推动它的股价持续上涨,这几年其股价已翻了几番。

NVIDIA当然对物联网行业也非常重视,由于在移动芯片市场失败因此早早布局物联网市场希望避免重蹈覆辙,目前它在自动驾驶市场已占有一席之地,4月初它宣布联合ARM打造AI芯片专用IP,将它的深度学习加速器IP集成到ARM的Project Trillium平台中构建深度学习IoT芯片。

高通当然也不甘示弱,其在近期发布了两款物联网和AI优化系统级芯片QCS603和SCQ605芯片,主要针对计算机视觉处理,可以针对安全摄像机、运动相机、可穿戴相机、虚拟现实相机、机器人等进行特别优化。

高通高度重视物联网市场与它当前在智能手机市场面临的冲击有很大关系,其在智能手机芯片市场能成为霸主与它拥有垄断性专利优势的CDMA有很大关系,而在4G、5G技术上它的专利优势正被持续削弱,苹果、华为因此要求它降低专利费,而同时它又正面临三星、苹果、华为等手机企业自行研发手机芯片以及联发科等芯片企业的竞争,因此希望拓展新领域,而物联网市场正是它看重的一个行业。

其实对物联网芯片市场看重的不单单止高通和NVIDIA,华为、三星、联发科等也对此有所准备,在高通、NVIDIA开始发布自己的物联网AI芯片后预计这些芯片企业也将陆续发布自己的同类芯片。

柏颖漫谈 baiyingmantan


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值