PyTorch计算损失的代码流程

本文概述了深度学习中的关键步骤,包括计算损失(loss_func)、梯度清零(optimizer.zero_grad)、反向传播(loss.backward)以及参数更新(optimizer.step),展示了训练模型的基本流程。
摘要由CSDN通过智能技术生成
loss = loss_func(outputs, targets)  # 计算损失
optimizer.zero_grad()  # 梯度清零
loss.backward()  # 反向传播
optimizer.step()  # 更新参数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值