loss = loss_func(outputs, targets) # 计算损失
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播
optimizer.step() # 更新参数
PyTorch计算损失的代码流程
最新推荐文章于 2024-11-03 09:27:06 发布
本文概述了深度学习中的关键步骤,包括计算损失(loss_func)、梯度清零(optimizer.zero_grad)、反向传播(loss.backward)以及参数更新(optimizer.step),展示了训练模型的基本流程。
摘要由CSDN通过智能技术生成