人脸识别关键技术及原理

本文深入探讨了人脸识别技术的关键步骤,包括人脸检测、对齐、特征提取、识别和活体检测,以及衍生的属性识别、比对、验证和检索等应用。通过这些技术,人脸识别在多个领域发挥重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人脸识别基础关键技术

这是一个「看脸」的时代,一谈人脸技术,大家最为熟知就是人脸识别。该技术在金融、社保、零售、安防等领域表现活跃,成为人工智能技术领域的明星。本文主要介绍一些背后默默支持人脸识别的技术。

一般而言,一个完整的人脸识别系统包含四个主要组成部分,即人脸检测、人脸对齐、人脸特征提取以及人脸识别。

四部分流水线操作:

  1. 人脸检测在图像中找到人脸的位置;
  2. 人脸配准在人脸上找到眼睛、鼻子、嘴巴等面部器官的位置;
  3. 通过人脸特征提取将人脸图像信息抽象为字符串信息;
  4. 人脸识别将目标人脸图像与既有人脸比对计算相似度,确认人脸对应的身份。

1、人脸检测(Face Detection)

检测出图像中人脸所在位置的一项技术

人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形,但也有一些人脸检测技术输出的是正朝上的矩形,或者是带旋转方向的矩形。

常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相关。开发过程中,我们可以通过设置“输入图像尺寸”、或“最小脸尺寸限制”、或“人脸数量上限”的方式来加速算法。

人脸检测结果示例:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值