DeepSeek大模型微调实战:保姆级全流程指南

第一步 Python环境准备

前排提示,文末有大模型AGI-CSDN独家资料包哦!

peft transformers datasets torch accelerate bitsandbytes

具体请见文件 requirements.txt 上方下载↑↑↑

第二步 构造数据集

本文数据使用.jsonl文件。数据为拟造,仅供试验

1.每一行数据为一个json对象,包含一个问题和一个答案

2.初学者请注意数据的内容并没有格式要求,只要在后续步骤中能够处理成训练数据即可

第三步,数据处理

1.加载数据集

2.编写数据格式化逻辑

下图的逻辑是将问题部分作为输入,答案部分作为标签。分词时,句子超过最大长度限制时就截断,不足最大长度时填充至最大长度,保持所有句子相同长度则可以Batch化处理:

下图是将问题和答案整体作为输入,自身作为标签:

3.分词

句子需要变成一个个基本单位或者叫做词,即token。分词的核心是在该模型对应的词表中找到每个词的编号,也就是它们的表示。

创建分词器(加载时使用的参数和下文加载模型一样),以及利用上面编写的格式化函数来格式化数据:

第四步,模型加载和量化

加载模型的方式:

1.指定模型名称和缓存位置,如果缓存位置没有模型则从HuggingFace上下载后放到缓存位置,不指定缓存位置则使用默认位置(用户目录下的.cache/huggingface)

2.直接给定一个模型的目录。这种情况一般用在使用自己训练的模型时。见后文加载微调后的模型并使用

第五步,配置LoRA

LoRA帮助我们只训练部分参数。

第六步,配置训练参数

比如学习率、batch_size、lr等等,这些是AI领域最常见的术语。其中图中的output_dir用于存放训练过程中输出的数据,如checkpoint。

第七步,初始化训练器

传入要训练的LoRA模型、训练参数、训练集、验证集、分词器等

第八步,训练及保存

训练:

保存分为两步:

1.保存LoRA模型

2.利用保存的LoRA模型和DeepSeek基础模型合并成完整模型,并保存

推荐"AI圣经"<<深度学习>>,经典作品值得人手一本~

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
在这里插入图片描述

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值