RANDOM VARIABLES
PART 1 Discrete random variables
PART 2 Combining random variables
PART 3 Binomial random variables
PART 4 Geometric random variables
PART 1 Discrete random variables
1. Random variable: is a set of possible numerical values determined by the outcome of a random experiment. It’s a way to map/quantify outcomes of random processes to numbers
- [Eg] Define a random variable
, where
2. Random variable vs. Traditional algebra variable
(1) Random variable is usually denoted as capital letter, such as ; traditional algebra variable is usually denoted as lower case, such as
(2) We can assign values/variables to traditional variables or solve the values for them; whereas random variables can take lots of values with different probabilities, and it makes much sense to talk about the probability of a random variable equaling to a value, the probability of a random variable less than/greater than a value, or the probability of a random variable having some properties
3. Types of random variable — discrete vs. continuous
(1) Discrete random variable: has a countable number of possible values. The number of values can be finite and infinite, but we can list the values that a random variable could take on
(2) Continuous random variable: can take all values in a given interval. We can’t count the number of possible values and can’t list the values.
[Eg1]
is discrete variable
[Eg2] is exact mass of a random animal selected at the New Orleans zoo.
is continuous variable.
[Eg3] is the year a random student in the class was born
is discrete variable.
[Eg4] is the number of ants born tomorrow in the universe
is discrete variable.
[Eg5] is the number of ants born tomorrow in the universe
is discrete variable
[Eg6] is the exact winning time for the men’s 100m dash in 2016 Olympics
is continuous variable
[Eg7] is the winning time for the men’s 100m dash in 2016 Olympics rounded to the nearest hundredth
-
is discrete variable
4. Expected value of discrete random variable
(1) Assume a discrete random variable can take
with the probability of
, respectively. The expected value of
is
(2) Expected value uses probability to tell us what outcomes to expect in the long run.
[EXERCISE] John just bought a brand new cell phone and is considering buying a warranty. The warranty costs 200 euros and is worth 1000 euros if his phone breaks. John estimates that there is a 10% chance of his phone breaking. Find the expected value of buying the warranty.
[ANSWER]
- If the cell phone breaks, the value of the warranty is 1000-200=800, with 10% probability
- If the cell doesn’t phone break, the value of the warranty is -200=-200, with 90% probability
- So the expected value is