Khan Academy - Statistics and Probability - Unit 9 RANDOM VARIABLES

RANDOM VARIABLES

PART 1 Discrete random variables

PART 2 Combining random variables 

PART 3 Binomial random variables

PART 4 Geometric random variables

PART 5 Law of large numbers

PART 6 Poisson distribution 

 


PART 1 Discrete random variables

1. Random variable: is a set of possible numerical values determined by the outcome of a random experiment. It’s a way to map/quantify outcomes of random processes to numbers

  • [Eg] Define a random variable X, where X= \begin{cases} 1, \quad head\\ 0, \quad tail \end{cases}

2. Random variable vs. Traditional algebra variable

(1) Random variable is usually denoted as capital letter, such as X; traditional algebra variable is usually denoted as lower case, such as x

(2) We can assign values/variables to traditional variables or solve the values for them; whereas random variables can take lots of values with different probabilities, and it makes much sense to talk about the probability of a random variable equaling to a value, the probability of a random variable less than/greater than a value, or the probability of a random variable having some properties 

3. Types of random variable — discrete vs. continuous

(1) Discrete random variable: has a countable number of possible values. The number of values can be finite and infinite, but we can list the values that a random variable could take on

(2) Continuous random variable: can take all values in a given interval. We can’t count the number of possible values and can’t list the values.

[Eg1] X= \begin{cases} 1, \quad head\\ 0, \quad tail \end{cases}

  • X_1 is discrete variable

[Eg2] X_2 is exact mass of a random animal selected at the New Orleans zoo.

  • X_2 is continuous variable.

[Eg3] X_3 is the year a random student in the class was born 

  • X_3 is discrete variable.

[Eg4] X_4 is the number of ants born tomorrow in the universe

  • X_4 is discrete variable.

[Eg5] X_5 is the number of ants born tomorrow in the universe

  • X_5 is discrete variable

[Eg6] X_6 is the exact winning time for the men’s 100m dash in 2016 Olympics

  • X_6 is continuous variable

[Eg7] X_7 is the winning time for the men’s 100m dash in 2016 Olympics rounded to the nearest hundredth

  •  X_7 is discrete variable

4. Expected value of discrete random variable 

(1) Assume a discrete random variable X can take x_1, x_2, ...x_p with the probability of p_1,p_2,...p_n, respectively. The expected value of X is E(X)=\mu_X=\sum_{i=1}^nx_ip_i=x_1p_1+x_2p_2+...x_np_n 

(2) Expected value uses probability to tell us what outcomes to expect in the long run.

[EXERCISE] John just bought a brand new cell phone and is considering buying a warranty. The warranty costs 200 euros and is worth 1000 euros if his phone breaks. John estimates that there is a 10% chance of his phone breaking. Find the expected value of buying the warranty.

[ANSWER]

  • If the cell phone breaks, the value of the warranty is 1000-200=800, with 10% probability
  • If the cell doesn’t phone break, the value of the warranty is -200=-200, with 90% probability
  • So the expected value is 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值