人工神经网络算法
输入层:输入特征值 隐含层:非线性变化重要过程 输出层:模型输出
输入层的数值范围为:0~1 归一化处理
隐含层可以有一层或者多个隐含层 转换函数[激活函数] : sigmod,ReLu,softplus
输出层 one-hot类型 两个类别[0,1] [1,0] 结果在0到1之间
最终输出值进行softmax转化:所有输出值相加等于1 每个输出值相当于概率
解题法:1,反向传播算法 前向计算——计算误差——反向单层调整(梯度下降法)——传播
达到一定误差,设置相应的迭代次数 停止该算法
2,随机梯度下降算法SGD 优点:收敛快 确定:局部最优点
容易过拟合:正则化,dropout:在每一层选择N个节点 组合为多个神经网络
import panda