随笔(3)——ANN 神经网络 初学版

这篇博客介绍了人工神经网络的基础知识,包括输入层、隐含层和输出层的结构,以及激活函数的使用。讨论了反向传播算法和随机梯度下降算法在训练中的应用,并提出了防止过拟合的正则化和dropout策略。通过实例展示了如何使用Tensorflow和Keras库构建和训练神经网络模型,并分享了环境搭建中遇到的问题及解决注意事项,如CUDA、cuDNN、Tensorflow和Numpy版本的匹配问题。
摘要由CSDN通过智能技术生成

人工神经网络算法

输入层:输入特征值    隐含层:非线性变化重要过程   输出层:模型输出

 

 

输入层的数值范围为:0~1   归一化处理

隐含层可以有一层或者多个隐含层  转换函数[激活函数] : sigmod,ReLu,softplus

输出层  one-hot类型  两个类别[0,1]  [1,0]  结果在0到1之间

最终输出值进行softmax转化:所有输出值相加等于1  每个输出值相当于概率

 

解题法:1,反向传播算法  前向计算——计算误差——反向单层调整(梯度下降法)——传播

达到一定误差,设置相应的迭代次数  停止该算法

2,随机梯度下降算法SGD  优点:收敛快  确定:局部最优点

容易过拟合:正则化,dropout:在每一层选择N个节点 组合为多个神经网络

 

 

import  panda

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值