重要评价指标:
Nash Sutcliffe Index 纳什·萨特克利夫指数指数NASH of 0.89, 水文建模的一个指标。在估计误差方差等于零的完美模型的情况下,得到的纳什-Sutcliffe效率等于1(NSE=1)。 相反,一个模型产生的估计误差方差等于观测到的时间序列的方差,结果纳什-Sutcliffe效率为0.0(NSE=0)。
root mean square error 均方根误差RMSE of 1.5, RMSE是预测值和实际值之间差异的样本标准差
mean absolute error 平均绝对误差MAPE of 1.1,平均绝对百分比误差(MAPE)MAPE是一组预测中误差的绝对平均大小,而不考虑它们的符号。它是预测值和实际值绝对差异的平均值。
Artificial neural network (ANN) 人工神经网络
根据该流程图,在选择模型输入后,应首先确定隐藏层和输出层的数量及其大小(神经元的数量)。然后选择网络评估标准来计算网络的观测值和预测值之间的误差。ANN可以根据基于训练数据的不同算法来确定神经元的权重和偏差。重复此步骤,直到观察值和预测值之间的误差低于阈值。
泰勒图相关性和标准差值